Old Dominion University Research Foundation

o @

NASA-CR-193289 , o

DEPARTMENT OF COMPUTER SCIENCE J/ <
COLLEGE OF SCIENCES
OLD DOMINION UNIVERSITY f

NORFOLK, VIRGINIA 23529

DEVELOPMENT OF A CASE TOOL TO SUPPORT
DECISION BASED SOFTWARE DEVELOPMENT

By

Christian J. Wild, Principal Investigator

Annual Progress Report
For the period ended March 31, 1993

Prepared for

National Aeronautics and Space Administration
Langley Research Center

Hampton, VA 23681-0001

Under

Research Grant NAG-1-1426

Dr. Dave E. Eckhardt Jr., Technical Monitor
ISD-Systems Architecture Branch

CASE TOOL TO SUPPORT DECISION BASED
SNDFTWARE DEVELOPMENT Annual

Progress Report, period ending 31 Unclas
Mar. 1993 (0ld Oominion Univ.)
151 p

July 1993

(5]

(NASA-CR-193289) DEVELOPMENT OF A N93-31738

G3/61 0175525



o -

DEPARTMENT OF COMPUTER SCIENCE
COLLEGE OF SCIENCES

OLD DOMINION UNIVERSITY
NORFOLK, VIRGINIA 23529

DEVELOPMENT OF A CASE TOOL TO SUPPORT
DECISION BASED SOFTWARE DEVELOPMENT

By

Christian J. Wild, Principal Investigator

Annual Progress Report
For the period ended March 31, 1993

Prepared for

National Aeronautics and Space Administration
Langley Research Center

Hampton, VA 23681-0001

Under

Research Grant NAG-1-1426

Dr. Dave E. Eckhardt Jr., Technical Monitor
ISD-Systems Architecture Branch

Submitted by the

Old Dominion University Research Foundation
P.O. Box 6369

Norfolk, Virginia 23508-0369

July 1993



Table of Contents

1. Introduction

2. Meetings with Paramax personnel

3. Paper describing the DBSD paradigm and presentation for Software Reuse Workshop

4. Issues in solving the software reengineering problem
4.1. The problem
4.2. The aproach
4.2.1. Alternatives
4.2.2. Upgrading DHC
4.2.3. Chart of problem space
4.3. Process Model
4.4. Evaluation Process

4.5. Market Study done at Paramax

5. Attachments

5.1. Paper and Viewgraphs describing DBSD paradigm, viewgraphs of the reusability
presentation

5.2. Process model for porting
5.3. Meeting notes
5.4. Chart representing the problems envolved by the reengineering process
5.5. Printout of the problem and decision spaces for the reengineering process
5.6. Process model for traditional life cycle of software

Notations specific to DHC

5.7. Logging form



1. Introduction

This report presents a summary of the accomplishments of this research group over the
past one year.

In accordance with our proposal, the achievements of this period of time are:

— made demonstrations with DHC, a prototype supporting DBSD methodology, for
Paramax personnel at ODU; met with Paramax personnel on a regular basis to discuss
DBSD issues, the process of integrating DBSD and Refinery and the porting process
model (see also Attachment 3 ).

— completed and submitted a paper describing DBSD paradigm to IFIP 92, Spain,
which was accepted and presented; completed and presented a paper describing our
approach for software reuse at the Software Reuse Workshop held in April 93 in
Washington, D.C.(see also Attachment 1)

—continued to extend DHC with a project agenda, facility necessary for a better project
management.

—completed a primary draft of the re—engineering process model for porting, defined at
the requirements level for Paramax re—engineering problem( see attachment 2 and 6).

—created a logging form to trace all the activities envolved in the process of solving the
reengineering problem (see also Attachment 7).

—according to our discussions with the Paramax personnel we have developed a primary
chart with the problems envolved by the reengineering process ( see Attachments 3, 4,
5).

2. Meetings with Paramax personnel

In this period of time we have met with Paramax personnel on a regular basis to discuss
DBSD issues, the process of integrating DBSD and Refinery and the porting process
model and we made demonstrations for them with DHC, a prototype supporting DBSD
methodology (see also Attachment 3 ). Also, Tammy Taylor (Paramax) demonstrated
Refinery for the ODU team.

3. Paper describing DBSD paradigm

We completed and submitted a paper describing DBSD paradigm to IFIP '92
Conference, Spain, which was accepted and presented. We also completed and
presented a paper describing our approach for software reusability at the Software
Reuse Workshop held in April *93 in Washington, D.C.(see also Attachment 1).



4. Issues in solving the software re-engineering problem

4.1. The Re—engineering Problem

Paramax desires a reengineering capability to address the following scenarious:

— port applications from one machine to another.

— translate an existing application on a source machine to an application in a new
language, machine independent so that they can have a kernel version of an application
which runs on several platforms.

—enhance the features of an application, extract the best features from several versions
of a given software system and create one kernel version.

They will need support for both porting and reverse porting processes since they want to
keep consistent the 2 versions of a program that has been ported.

4.2. Approach
4.2.1. Alternatives

To address these problems we can adopt one of the following alternatives:

— build solution from scratch, develop a fully automated, noninteractive system for
specic cases.

— develop an expert system using only DHC.

~ integrate DBSD and Refinery into a Unified Environment.

— adopt some other non—-automated tools suited to our purposes(like UNIX “awk”, for
example).

We have decided to adopt the alternative of integrating DBSD and Refinery, since in
house and local capability exists and Refinery may allow for significant automation
through use of transformation rules, DBSD creating the environment for recordin g the
methodology of the processes performed and the decisions taken during the
development of these processes.

For this integration of DBSD and Refinery we see two possibilities:

— make them loosely coupled, seeing each other like a black box that executes its Job
sequential in time with respect to the other tool.

—make them tightly coupled, i.e. embed DHC in Refinery or viceversa. For this case we
need a deep understanding of the source code, capabilities and functions of Refinery. We
would like to have answers from Paramax to the following questions that would help us
to figure out the final approach of this problem:

—which are the capabilities and functions of Refine? Are they noninteractive so they can
be wrapped into DHC functions, are they sufficiently small to be embedded?

— how is the precision of decision structure maintained through the Refinery
transformation?



Up to now we have developed the loosely coupled version, choosing the simple way of
porting, in order to better understand the process.

For example, if we want to port an application from Harris to Honeywell or Microfocus
Cobol, or Honeywell to Harris or Microfocus Cobol, one should perform the following
steps:
— select sample Harris code
— select functionally identical Honeywell code
— parse Harris code into Refine object base, generating an Abstract Syntax Tree(ASTI)
— parse Honeywell code into Refine object base, generating an Abstract S yntax
Tree(AST2)
— perform manual comparison on programs and components
— isolate problem areas:
— areas where there is no one—to—one transfer
— overlapping of functional modularity.
— develop Refine code to convert Harris Cobol to Honeywell Cobol
— develop Refine code to convert Honeywell Cobol to Harris Cobol
— develop Refine code to convert Harris Cobol to Microfocus Cobol
— develop Refine code to convert Honeywell Cobol to Microfocus Cobol
— perform manual completion of the conversion in each of the above cases
— use DBSD for recording methodology and the decisions taken during the
development process.

In the development process one might find decision views attached to the original
source, decision views attached to the transformation rules or decision views attached to
the target source. The latest might include decision views attached to the original source,
decision views attached to untransfered code, decision views attached to new code -
generated during transformation process, mapping of decision views attached to
transformation rules to the target code. In order to be able to distinguish among this
diversity of decision views we need to develop in DHC a mechanism for “filtering” the
views.

4.2.2. Upgrading DHC

In developing the solutions for the reengineering problem we began to recognize the
importance of managing problems which are in a state of transition. Problems which
have not been fully integrated into the document base must be kept visible. A project
agenda is used torecord the state of all problems under active development. This project
agenda may contain tentative alternate solutions to problems from which an assessment
can be made. Once a commitment is made, the chosen solution can be linked into the
document base. So, problems which have been identified but not yet solved are kept in
the project agenda. Project managers use the information in the project agenda to



allocate resources to solve these problems. Focusing on this process instead of the
products of development allows management to control the scheduling of activities.

4.2.3. The chart of the reengineering problem space

According to our discussions with the Paramax personnel we have developped a
primary chart with the problems envolved by the reengineering process ( see
Attachments 3, 4, 5). It contains the graphical equivalent of the problem and decision
spaces. The problems in the chart are indexed by the number in the DHC.pd file (the
problem description file). It includes the problems, alternatives and output of the
problems, linked together by decision, justification, alternate and output links.

4.3. Process Model

In the referred period of time we have concentrated our efforts in creating a primary
draft of the re—engineering process model for the porting problem, in order to better
understand it. We have decided to write separate methodologies for portin g, enhancing
and translating because the process is too little understood to fully develop a general
methodology for everything. This process model addresses the activities and their input
and output used in creating and using the information necessary to the problem solving.
By writing an explicit process model, the roles of different members of the software
engineering team and management is clarified. In addition, it is possible to identify
desirable functionality for the software engineering environment.

We have attached the primary draft of the porting problem (Attachment 2) and the
DBSD process model for the traditional life cycle (Attachment 6), as well as the
notations used in these two process models.

4.4. Evaluation Process

In order to evaluate the conditional decisions during the process of solving the porting
problem we have created a logging form that will help us to keep a notebook of
activities, tools used, features applied, the time spent in each activity as well as the
products of each activity (see Attachment 7).

All this information will be applied to a statistical analizer that will help us to figure out
the frequency , duration of each feature, the size of various parts of
documentation(decisions, transformation rules, source code, BNF rules, etc.), amount
of new parts vs. changes in existing ones in the dynamic process of this problem solving.

4.5. Market Study done at Paramax

In order to complete our research and document preparation, we need answers to several
questions which are listed below. These questions represent concerns about the market
which Paramax is serving and expected market conditions for the future. This will assist
us in defining our reengineering model and associated activities. We request Tammy



Taylor from Paramax/Virginia Beach to gather the answers to these questions or to put us
in touch with the appropriate personnel that can provide us the guidance necessary to
proceed.

1. Does Paramax/Virginia Beach and Paramax/Corporate have contracts for porting
software from one platform to another? If so, how many and to what extent? For
example, a. How big are the contracts to port in terms of lines of code? b. What
language are they in? ¢. What is the value of the contracts? d. What solutions to these
problems have been used in the past? e. What problems have been encountered with
these solutions?

2. In porting software, is the requirement a one to one port? Meaning, are you to just
move the software as it stands and provide the necessary mechanism for running in
another environment? If so, once the portis complete, will you be contracted to enhance
ported software in the new environment? If not, what is the expected duration of the
ported software on the new machine? (i.e. will it be redeveloped from scratch in the new
environment? etc.?)

3. How often do you foresee performing software porting? software translationg” and
software enhancements in the foreseeable future? Anotherwords, what is your
predicted bussiness direction?

4. What impact does the Department of Defense (DOD) have in your business goals?

5. Whatdoes the DOD mean by reuse/reengineering? Are you solely driven by the DOD
requirements?

6. What are the characteristics of reuse?
7. What are the characteristics of reengineering?

8. What types of software systems do you envision the DOD wanting to perform
reuse/reengineering on?

9. What are the strategies of DOD for the foreseeable future?

10. What relation does ICASE play in those strategies?



ATTACHMENT #1

Paper and viewgraphs

'describing DBSD paradigm



Software Life Cycle Support - Decision Based Software Development

Chris Wild and Kurt Maly

Department of Computer Science,
Old Dominion University, Norfolk, VA 23529-0162 USA

Abstract

The software engineering life cycle encompasses a broad range of activities from the initial
elicitation of the system requirements to the continuing evolution of the operational system. These
activities can be best supported if there is a unifying paradigm which can integrate functional and
non-functional problem-solving, process management, and knowledge acquisition and reuse. The
Decision Based Software Development (DBSD) paradigm structures the software development and
evolution process as a continuous problem-solving and decision making activity. In the DBSD
paradigm, the software engineering team identifies and articulates software development problems,
proposes alternative solutions, develops supporting justifications from which a decision is made. By
making the problem solving process visible, DBSD allows management to control the creative, and
sometimes chaotic, set of activities comprising software development. By recording the decisions,
decision making rationale and the relationships among decisions and between decisions and the prod-
ucts of software development, the source code and related documents are structured significantly
different from traditional structures such as the modular or data flow view. This structure asso-
ciates a decision with only those parts of the documents affected by that decision. These decision
views support continued evolution of the software system because both the rationale for individual
decisions are recorded as well as the interrelationships among decisions. Documenting these interre-
lationships helps the software engineer assess the impact of changing a decision and to understand
the consistency requirements among a set of decisions.

Keyword Codes: D.2.0; D.2.2; D.2.7: D.2.9
Keywords: Software Process; Software Maintenance; Engineering Design

1 Software Development Problem

The engineering of large systems is a complex undertaking which requires sound technical methods
and careful project management. In order to make significant progress in improving software creation
and maintenance, a better understanding of, and support for, the development process will be
necessary. By focusing on the software products most approaches to software development do not
adequately support the design process itself. Non-functional requirements are poorly represented
by the current software engineering structures. We believe that supporting the design process
will require a fundamentally different development paradigm which addresses the entire systems
development life cycle. In this paper, we describe the Decision Based Software Development (DBSD)
paradigm for systems life cycle support.

A good software engineering methodology should provide knowledge sources, reasoning agents
and process management. The purpose of documentation is to capture knowledge for later reuse. In



addition, project knowledge is contained in the minds of the software engineering team. Reasoning is
carried by the members of the software engineering team. This reasoning can be assisted and in some
cases replaced by software engineering tools. The process describes how knowledge is created and
used during the development effort. It deals with the management of the knowledge and reasoning
resources.

It is our view that automating the project knowledge base will provide the greatest near term
leverage for addressing software engineering problems. Existing document bases suffer from two ma-
jor deficiencies. First, not all the critical information is contained in the document base. Traditional
documents typical only record the results of the problem solving process in terms of the particular
solutions taken and only if this solution results in a visible product or deliverable. Much of the un-
derstanding and justifications for making particular decisions exists only in the minds of the original
developer. This information consists of relationships between different requirements which require
tradeoffs to be made, promising development paths that later proved to be dead-ends and alterna-
tive paths that could lead to a better solution if more resources were available to pursue them. The
person who subsequently uses the document base to make changes, must be able to reverse engineer
this missing information. The second problem is that the organization of the document base may
not support easy access to relevant information that is contained there as it is needed. At the very
least, more effort is expended to locate this information. In the worst case, this information must
be reverse engineered. Reverse engineering critical information is both time consuming and error
prone and contributes significantly to the software problem.

The conient and organization of the project document base thus plays a critical role both in
guiding the initial development and supporting system evolution. During the process of software
development the software engineer needs access to only a selected subset of information from the
document base. The subset of information needed to perform a particular task is called the closure
of that task. The ideal closure contains exactly the information the software engineer requires
to perform the task. The actual closure refers to that subset of information which the software
engineer can retrieve from a particular document base. The actual closure is determined by the
organization of the document base, the set of information retrieval tools available, and the process
used to build the closure. Much of the effort on structured programming has been to organize the
program text and development process to support closure based on modular structure and functional
abstraction.

The document base should be used to support the development process. This implies that
the document base contain more than the final products of each phase of the life cycle. In order
to support the early phases of development, the document base must record the problem solving
process, even if the relationships between these problems and the final products is not yet clear.
The development process must allow for easy evolution and maintenance of the document base. In
addition the documentation effort should not place an undue burden on the developers. Information
that Is easy to reverse engineer, need not be included in the document base. It should be easy to
add missing documentation and to correct the inconsistency of existing information.

2 A New Approach: Decision Based Software Development

The Decision Based Software Development(DBSD) Paradigm has been proposed to support the
process of software creation and evolution. DBSD belongs to the school of thought that the devel-
opment process can be modeled as a set of related problem solving episodes [?, 7, 7, ?].

Organizing the document base and the development process around problem solving and decision
making is more general than using data flow, top down design, module decomposition, object oriented
design or other structured methods. Problem solving is a universal activity which spans the life cycle.
For example, many of the decisions in determining the requirements are based on weak justifications
or are made without a full understanding of their consequences. Documenting the decision made
during the requirements definition would help the designers understand which requirements are firm
and which could be revised in order to build a better or cheaper design.



Example 1 A system requirement stipulates a response time under three seconds for 90% of the
transactions under worst case loading. Providing the resources to meei this requirement may be
wasteful if the worst case load occurs extremely rarely or if the three second limit was chosen arbi-

trarily.

Both functional and non-functional requirements involve problem solving. Non-functional problem
solving receives very little attention in most software development approaches. Many of the solutions
to non-functional problems do not directly result in software products but the provide the constraints
under which software products are developed. The response time requirement described in the
above example may be the proposed solution to the problem of keeping the user attention and
reducing frustration, but it does not in itself produce code. It does, however, affect the choice of
data structures, algorithms, overall software and hardware architecture and hardware performance
requirements. Additionally, problem solving is process oriented. Since engineering involves many
tradeoffs, there will be times when earlier decisions will have to be changed. Documenting the effects
of these decisions will ease the burden of making these changes both during initial development and
system evolution.

Recording the decisions and structuring the document base by these decisions has an additional
advantage. In initial development, focusing on the identification of problems, alternate solutions and
Justifications provides structure into what is a creative but often unstructured process. The status
of the progress among all problems is recorded. If a problem has been solved, the decision and its
justification is recorded together with all its effects. Problems which have been identified but not yet
solved are kept in the project agenda. Project managers use the information in the project agenda
to allocate resources to solve these problems. Focusing on this process instead of the products of
development allows management to control the scheduling of activities.

The primary advantage to recording the decision structure of a project comes forth during soft-
ware maintenance. If the software contains a fault it is because at some stage in the problem solving
process a faulty solution was chosen. If a solution leads to poor performance, then the decision
which choose that solution must be revisited and an alternate solution should be chosen. When
adding new functions to a system, the documentation of decisions will help the software engineer
decide which solutions can be reused. Another advantage of relating documentation to decisions is
when decisions are changed, those parts of the document base which are affected by that decision
are more easily accessed and updated. This helps address the problem of keeping the documentation
up to date.

The problem solving model is in contrast to the transformational model of development in which
an initial abstract document describing the system is transformed into an efficient operational system.
One of the problems not addressed in transformational system is how the initial system description
is generated. The basic problem solving process involves the following steps:

1) Identification and articulation of the problem to be solved.
2) Generation of alternate potential solutions.

3) Validation and Justification. Before a proposed solution can be adopted, it must be validated
as a feasible solution and its choice among all the feasible solutions must be justified. This
Justification is done in the context of other decisions and constraints.

4) Commitment. If there are several alternate solutions, then a decision must be made. This
decision is justified both by the quality of the solution and by the context in which the decision
1s made.

Because a solution to a problem may itself constitute a subproblem, the process of problem solving
is recursive.

DBSD introduces new information structures into the project document base as shown in Fig.
??7. The decisions are listed on top with the links to the relevant problems visible. In this figure we
have organized the document base according to the traditional life cycle and hence have grouped



D - HypoerCase

Decision Structure View of Document Base

',' Architectural ,“ Detail Design

Requirement ".‘ Specification . Design Legend
\ K S View Link
‘. . 1 eeeeesaane— L od
J:] N [;] Justification
; A ,D N ;] ) Dependency
I3 ', 4 " I, ——————
i Decision
/ Source Alt Link
" ----- -
\ Aliernate
\ NNNNNNN Problem
SONRAN )
BN Decision
View

I
|
" |
{ _Reg.doc > |l %
g, L]
2777272 \'-‘l\ Design doo.! 1‘ e
. N, .
\ eirsz \
Lo/ s \ ' 1
f . \
N } \ user
K I3 '.‘ \\ manual
: I \
. Spec. doc /I ' 4 \\
. L/ /.

Figure 1: Decision Based Software Documentation

decisions into requirement decisions, specification decisions, etc. However, the DBSD paradigm is
independent of the software development methodology used and this particular grouping is only for
illustration. Since solutions to one problem may require further problem solving themselves, decision
structures are linked together by a problem/solution dependency link. If a decision structure
references or defines an artifact described in the software document base, a linkage between them
is made. The decision structure provides a view of the document base which support the problem
solving process. We call this view of the software document base the decision view.

Since design involves a careful consideration of tradeoffs among alternatives, decisions are typi-
cally made in the context of existing decisions, solutions, and policies. Justification links provide
the context of solutions and other problems in which a decision is made. The structuring provided
by decisions does not necessarily correspond to the normal presentation structure of a document.
The Presentation Structure of a document is the organization traditionally used to present the doc-
ument. This structure may be dictated by documentations standards which detail which sections
must be present, their contents and relative order or by document processing programs (such as the
compiler or document preparation tools). The view of a decision may be scattered throughout a doc-
ument(s) impacting many parts of it. In addition, several decisions may impact the same part of the
document. As shown in the figure, several decision views may overlap. Through the problem solving
graph, one can trace from any document back through the relevant problems to a requirement. Or
one can trace from a problem to its solution, expressed perhaps as the lines of code which implement
a solution to that problem. Since requirements, specifications and design documents represent a so-
lution at some level of abstraction, the problem solving graph provides a view of those documents.
Also some of the final solutions are not programs. Users manuals and operations guides are part of
the system solution and can be in the view of decisions. This figure indicates the generality of the
DBSD paradigm. All phases of the life cycle can be viewed as problem solving from the generation
of the initial requirements to the source code. In fact, DBSD encompasses other design activities



as well. We have applied the DBSD paradigm to the development of its process model.

In order to gain a better understanding of how DBSD paradigm can be applied to software
development and maintenance, a prototype DBSD support system, called D-HYPERCASE , has
been developed. D-HYPERCASE is described in [?].

3 Process Modeling

Since problems can arise at any time during development, fitting them into a problem space is
not predetermined. The organization of this space and the resulting structure of the final software
system is not given and will depend on how decision making is managed. For example the Spiral
Model of software development [?], focuses on the high risk problems first which provides the context
in which less risky problems are solved. Incremental Build delivers a system as a series of products
with increasing functionality where later versions build upon decisions made during the earlier
versions. We believe that DBSD is a fundamental paradigm which can be incorporated into diverse
engineering methodologies. In order to better understand how to utilize DBSD we have developed
a general process model for it. This process model does not prescribe the order in which decisions
are made nor the set of documents produced. This process model addresses the kind of information
to produce and the activities used in creating and using this information. By writing an explicit
process model, the roles of different members of the software engineering team and management is
clarified. In addition, it is possible to identify desirable functionality for the software engineering
environment.

In developing the process model, we began to recognize the importance of managing problems
which are in a state of transition. Problems which have not been fully integrated into the document
base must kept be visible. A project agenda is used to record the state of all problems under
active development. This project agenda may contain tentative alternate solutions to problems
from which an assessment can be made. Once a commitment is made, the chosen solution can be
linked into the document base. In recognition that software development is an on going problem
solving activity, it is often possible to identify those decisions which are likely to be revisited after
deployment. One of the major insights in developing the process model for DBSD is development
of a active role for planned maintenance in the design decision making process. Because decision
making is often hindered by lack of experience or limited ability to judge the appropriateness of a
solution, many solutions will be sub-optimum or unworkable. Since in a complex system there will
be many decisions which will impact the overall performance either favorably or adversely, it can be
quite difficult to assign credit or blame to individual decisions. We propose that decisions supported
by weak justifications be validated by instrumenting the solution to collect data which will support
or refute the decision - a process we refer to as the DIRE (Decide, Instrument, Re-Evaluate)
method of problem solving.

Example 2 In a previous ezample, the response time under a worst case load was required to be
under 3 seconds for 90% of the transactions. In order to validate or refute the worst case scenario, the
system could be instrumented to collect watershed statistics. These statistics can help give insight into
the nature and probability of worst case behavior. Subsequent decisions which affect this requirement
can now be more informed.

The process model provides for management of the development team through a series of activ-
ities. In our model the activities include

e identification of new problems.

e interaction with the software engineering environment to understand a problem and its constrain-
ing context,

e assessing different methods of solution including reuse of existing solutions

e review of proposed solutions in a decision review meeting

¢ update of the project document base including problems in process



» allocation of resources by management to the solution of active problems
e implementation of committed solutions

4 Experience

The original concepts of the DBSD paradigm were developed as a result of a set of experiments
in performing maintenance tasks on a moderate sized production Navy application program. Since
these initial experiments, we have built two Software tools supporting the DBSD paradigm. We
have also developed a general process model for DBSD. To the degree it was practical all these
efforts were developed using the DBSD paradigm. The following is a summary of what we learned
from these experiences. More details can be found in earlier publications [?, 7, ?].

o We found the reusability often relates to solutions to problems which result in code fragments
scattered through the modular structure. This particularly true if the solutions are heavily impacted
by non-functional considerations.

e The time spent in understanding an existing system consumed the major portion of the effort
during maintenance tasks (we measured about 80%). Furthermore, understanding the non-technical
reasons why certain solutions were taken were the most difficult to reengineer.

o The first software tool was built using a graphical hypertext system developed at Old Dominion
University. This system was extensively modified in adapting it to our project. The decisions
structure for the original software was reverse engineered by one of the original systems designers.
In order to assess the value of DBSD in this effort, a set of metrics were developed to measure the
differences between the ideal and actual closures. An abstraction metric [?] measures the size of
the document base associated with a viewpoint. Examples of viewpoints are decisions, modules or
function points. The number of viewpoints which must be understood in order to perform a task
defines a related metric called the task abstraction metric. A set of precision metrics measures the
difference between the actual and ideal closures (percentage of actual closure not in the ideal and
percentage of the ideal closure not in the actual). During this initial development data was manually
collected to measure precision and abstraction. These preliminary results [?] indicate that by using
the decision view instead of a functional view of the software, the software maintainer would be able
to find the relevant parts of the document base more precisely using fewer abstractions (by a factor
of 2 to 5).

* Removal of obsolete code would be easier using the decision view than a functional view of the
source code document. We believe the same would hold for other forms of documentation as well.
e We do not expect that it is possible to develop a perfect decision structure. An unstated problem
or assumption will of course not result in a decision structure. The penalty for changing a system
with unstated decision is that they will have to reverse engineering during the understanding and
impact analysis. However once articulated, there is a rapid growth in the precision of the decision
structure with respect to the new and future related changes. This restructuring is much easier than
that which would be required by restructuring an inappropriate modular structure for a system.

e The last observation on the ability to grow and modify the decision structure suggests that it
should be possible to apply the DBSD method to existing software systems.

o The additional effort to document the decision structure was measured at an additional 10% in
keystrokes entered. This reflects the decision to automatically associate the primary decision with
the document as it is initially entered ( that is, the software engineer, first identifies the problem
they are working on, then edits the document base. All new entries are automatically associated
with the current decision). We believe audio data entry would reduce the effort even further.

e The process model described in {?] is our third experience with DBSD. This effort further shows
the generality of the DBSD approach. The process model deals primarily with management issues.
We are currently building a third system which incorporates additional support for the process
model. In particular, this system will have project agenda management and will help build and
assess the closure of a maintenance task.



5 Conclusions

The Decision Based Software Development Paradigm offers a new approach to developing and main-
taining complex software systems. In this approach, the process is organized around the problem
solving activity rather than the product structure. Our research into the DBSD paradigm has
addressed the organization of the document base, the functionality of a Software Engineering En-
vironment and a process model to support it. It provides a different structure of the document
base which is related to the process which creates and maintains it. This model supports decision
validation based on the Decide, Instrument, Re-Evaluate (DIRE) paradigm in which the software
system is instrumented to collect data to validate or refute decisions which are weakly justified. Our
experiences with the DBSD paradigm indicate that it is sufficiently general to provide life cycle
support for complex software systems.



Software Life Cycle Support:
Decision Based Software Development '

Chris Wild Kurt Maly
Tammy Taylor Daniella Rosca - Jing-Yuan Zhang

Department of Computer Science
Old Dominion University

Norfolk, VA 23529-0162

I'Work sponsored by grants NAG1-439, NAG1-966 from NASA Langley Research Cen-
ter and grant CIT INF-92-008 from Virginia’s Center for Innovative Technology



IFIP - September 1992 2

OUTLINE

¢ Background

e Decision Based Approach to Software Development and
Maintenance

¢ D-HyperCase: Prototype Implerneutation
¢ Process Model for DBSD
e Discussion

¢ Conclusions




Creator's Knowledge Base

Creator

~

[ Software System <

Document Base

\
|
I Behaviours 7/
~ / : /
~o /
/ /

)
~

Non-Functional Reqgs

Design Rationale

Decision-Based Software Development : Design und Maintenance

D_\\ Structures
f \ Functions

\

N
~

U/M Knowledge Base

User/Modifier

———

Old Dominion University



IFIP - September 1992 4

‘What are the Problems?

e PROBLEM: Most Documentation Fails to Support the
Process -
Document After the Fact, Largely Irrelevent.

e PROBLEM: Functionally Oriented Software Engineering
Methods -
Poor Support for Non-Functional Requirements Resolu-
tion.

o PROBLFEM: Structured Methods Oriented Around Prod-

ucts -
Early Stages of Life Cycle, Policy Making, Style Concerns
Ignored.

e PROBLEM: Rigid Structures -
Reusability and Evolution Constrained.




IFIP - September 1992 5

Decision Based Software Development

= Model the Process of Software Development and Evolution
as a Set of Interrelated Problem Solving Episodes.

= Record Decisions Made and Their Relationships to Other
Decisions and to the Products of Software Development.

Why Problem Solving?
e Supports Process Across Life Cycle

e Supports Non-functional Requirements Resolution

e Process Oriented
Why Record Decisions

¢ Decision Rationale Difficult to Reverse Engineer

Record Promising Alternate Solutions and Dead Ends

¢ Engineering is Trading Off Decisions

e Software Maintenance is Changing Decisions




Wiy
Decision Structure View of Document Base
Requirement '\‘ Specification . Architectural ,  Detail Design Legend
. K Design )
| ) ; View Link
‘| "l " ————— >
* : ! Justification
) " I aeaecaaa -
/ A, [ ; o/ Dependency
f r, 7 ' / ’ 4
; v ' . _—
/ x4 . Problem Spate ), / nd Decision
/ ’ - == * ’ — - —
) Voo GED I .
\ / '\ TAEEE e iy Source Alt. Link
t “ foeo N 1 1 e -~
' AL 2T ]_.’,,- -
\ S s N AN Altemate
\ Jeamnrial N \\\\\\\\ Problem
. ' ! NN -
» X : : OO Decision
, 2 D o aa S0 SRR S O
// ; \ // . ﬁ: I View
X ‘ -t |
( Req. doc . \\ : ]/ ; = ’, ’/ e
A ¥Y + ' ]
/'/ ,/‘ . : ] . ’ ‘
it ' \{‘ Design doc., |
' \\ N \ ey
] b N - + \
— N L2222 I
7 &\ . \
‘ \ \
. } ' \ user
N [\ ) \\ manual
' I . \
I' I ’ \
. Spec.doc /& ' Sl
l' - . \\ .(/ l|' '. ////////;//
Fig. 1 Decision-Based Software Documentation

——— Decision-Based Software Development : Design and Mainienance Old Dominion University




Legend
View Link

, / , Dependency

—————

Decision
——— - —

Alt. Link

Alternate

Problem
G

Decision

View

|
(
I‘
Design doc. . |\
|
\

‘ ‘‘‘‘‘‘‘
\ = U Ty e,
A\
//‘_;///,/’ Py
\
\
\ user
\ manual
\
\
\
N
PR

Forming Closure

Decision-Based Sofrware Development : Design and Maintenance ——————— Old Dominion University e—



[N I 1Y ' Aoas

e Qi [ |

S\ L L S reowres
mrMlllnlw\-muhu—lnmrnmml--\-.u‘u-h-d'-nrluu-lw-ad 1tene?
ATWaIs

12 lrtax recores on Gols W oroer arice crges by ene, Nnv—nuuuu-ib’"u.u-rimuw e irowaed fils oroered
[pa

2 mmm-h—.mmm oy, salecting Vwme price charges which s recet,

3 Owege Uw priaary hoy Lo ba dete.
MECISION: Tana MLTEWRTE 1
ABTIFIOATION: Thia dacreiew 1 as ATTRRTE 1), Me wrond altemats reas

POFOR DAIE-OEIR Iy DRTE-CEX-LaL
IF DRO-AG « T
@ 10 HSPAT - REAR IPLAY—ELL.
O 8 ) C~niN,
OV St- 1O C-mar,
FOVE S1-TEMR 10 C-TEAR,
(AL TAIDAL" VSInG CAEND- 19018
POV LI BT 1 AT SE (S o e TO% 2
ZER0S TO F, SPE-OAT
CAL Slana? i st A -0 LT
IF s -
o D

SE
CD 10 $ISAAY-@-af Y

rllll-(’llL-'W?.

"G 5% [0 L0,

FOVE CS-UIC T Amuic. recall decisien retionele
10K $1-DATE 10 P-DNTL. wali
PO TLAOS 10 F, SIOM-TN]Y wece-gonlim
MOVE SPACES TO ML )-STOOX e ..
IF SIART-FLIG « "x°

0 10 PRINI-J INIL INES,
PEVOW AOPCL LY 514T Doy
ROPC -3¢ T -EY - START -Ox (1,
IF LR 1p-egY o X"
€D 10 NISAAT~2@-50- B PUW LI,

L35 MENAS

o
-

[ 3%

RINT -0 TAILL RS

1F (F-20PCua °T°

@ 10 On-PRINT,
L

A .
1 A I4TEX-0 + PWCES
0K X -STOCX-Mr@Ed "0 - 370X -0,
T MLI-SIO0X-A0 o PC-5 100X - wm iR
Al SENTEACE
as
PLAFCAN PRINT-STOOK M0 101 THAJ AREAL-5-m- 1111,
FOVE P 510K A 1D M-S 1A ),
N LDk,
WO £ T0 P 1TOvr0
m PC104 0 10 =510 Q.
MOVE TYNCS 10 O-STORE
AD DR [ 13 T LT
MK CIae 1D ST WIS (D A5 106 &K,
OV 1 10 < TON

L ALALLLLLSSbSLLY

) AGE \S
s T



IFIP - September 1992 9

Software Maintenance Life Cycle

Understanding:
What problems are addressed?
How are they solved?
Why was this solution chosen?
How are the parts of the system interrelated?

Impact Analysis:
What parts of the system are affected by a decision?
What decisions impact a particular part of the system?
What Level of Effort is Required?

Redesign:
Justify and Commit Redesign
What parts of the system can be reused?
What parts are now obsolete?
Is the modification consistent with the rest of the svstem?

Validation:
Does the System satisfy its requirements?
If not, which decisions must be changed?




IFIP - September 1992 10

Process Modeling

Process:
e Set of activities

Relationships among Activities

Team Structure and Responsibilities

Role of Software Engineering Environment

Policy and Constraints

Resource Management

Process Model: Formalization of a design method which

Provides notations amenable to analysis

Encompasses breadth and depth of software development
e Assists in management - defines milestones

Provides heuristics/algorithms for well-understood situa-
tions




o 10a

Process Model for Traditional Life Cycle

Detailed Description

Lxternal_customer_requirement_resolutioncy --> taskcy > (Software development | Customer feedback) >
system

Internal_perfection_and_correctioncy yp --> taskcy ua > Software_development > system

Software_development --> task > (Undersianding,,,
Undersiandingsg ) >/*requirements_definition*/ task_root: task_problem
/*list_of reusables candidates*/ {problem},

Task_problem_solving > /*first_level_decomposition*/ {task_problem),
{Assessmeniy, s¢ > (task_root, effort, task_root.size, task_root.risk) Change_task_decision > task_root)

Assign_resources > schedule
Transfer_task_to_problem_space > agenda
{agenda: schedule > Sotve problemse > agenda

Review_meeting > meeting_notes
Implement_meeting "decision > schedule, agenda)

Understandingy, sz --> Exploring || add_to_reporty, ;¢ > report
Exploring --> Requirements_definition || Reusability search

Requirements.definition --> (keywords > locate_problem > relevant_nodes: {problem},
make_new_requirement) > task_root_problem

V relevant_nodes > Understand_problem

Understand_problem --> problem >{(Visit_node dependency up > problem)
| tcrminulc_al_nodc_closurc_rclcvzml_nodcs

I back}

/*exploration*/ (justification_from > problem
| justification_to > problem
| dependency up > problem
| dependency _down > problem)



Problem Status for Task A Task Status for Release 12.4

100

90

80

70

60

50

40

30

20

10

0 20 40 80 80 100 120 ask A Task B Task C Task D

Problem $ fqr Task: Reduce Response Time (Task A)
Status of Problem P37

# Size Min Max
New
Del
Reuse
Sourcs
-7 Open
Total
Open Problems Unassessed
P45
P135 User
P42 Manual
P56 : \ ]
\ DesignDoc. | Process
X \ Model
1 -

Decision-Based Software Development : Design and Maintenance ———— Old Dominion University — |




IFIP - September 1992

Managing Deferred Decisions

¢ Problem Not Adequately Understood
e Solution Identified First

e Inadequate Justification

Instantiating a More General Problem

Inadequate Resources

Unexpected Opportunities

®

¢ [nexperience




IF]P - September 1992 13

DIRE - Decide, Instrument, Re-Evaluate

Problem
e Engineering Tradeoffs involve many interacting decisions.
e Inexperience affects quality of some decisions.

e Impact on overall performance of decisions may be difficult
to determine.

Solution
o Identify decisions with “weak” justifications.

e Minimize the impact of these decisions (minimize justifi-
cation links).

e Instrument system to validate or refute this decision.

e Re-evaluate decision using data collected from operational
system.




IFIP - September 1992 14

Evaluating the Process Model

o Assess degree to which the objectives have been met

¢ Develop a better understanding of the dynamics of the
process

o Identify what pieces of information are needed and when
¢ Develop a methodology for DBSD

¢ Identify where tools could be applied to improve the pro-
cess




IFIP - September 1992 15

Interval of Evaluation

Main purpose of evaluation is self improvement.
Balance progressive and anti-regressive activities,
Four intervals of evaluation:

System Life Time: A cost/benefit analysis is done over the
life time of the entire system.

Release: Most large software systems go through a sct of re-
leases over its life time. Each release usually represents a
significant change in the systetn in which major problems
are rectified and new features are added.

Task/Change Order: A task represents a unit of work to
be performed. A task could be defined in response to a
trouble report or could represent the addition of some new
feature.

Session: A session represents a contiguous period of time dur-
ing which the programmer is working in the development
environment.




IFIP - September 1992 16

Understanding the Dynamics of the Process

e Is there a working set model for software maintenance
tasks?

* How are the dynamics of the process affected by the task
type (corrective, perfective, adaptive)?

What information was found useful in performing a task?

What are the different information needs of Managers.
Software Engineers, Others?

What information was missing or difficult to access”

How can consistency be maintajned?

Session/Tasks Measures gathered:
¢ Sequence of decisions visited

* Sequence of commands issued

¢ Time spent in each view

¢ Keystrokes entered




16a

by

Production

Demonstrate Process

Log Process

C——— Decision-Based Software Development : Reengineering problem space Old Dominion Unuversity



IFIP - September 1992 17

Summary of Recent Experiments

Data Collected over 43 Sessions Resolving 10 Maintenance
Tasks.

o Additional Documentation Effort for the Decision Struc-
ture is about 10%.

* About 80% of Time was Spent in Reading This Documen-
tation.

¢ About 90% Of The Accesses To The Document Base Were
Through The Problem Views.

e The failure rate of reused code was 5 times less than new
code.

¢ Changing decision on cursor position in second window
involved the deletion of ope problem whose view contained
315 LOCs in 25 functions (containing a total of §92 LOCs).

¢ Corrective Maintenance tasks are more localized with high
holding times.

* Perfective Maintenance tasks access many views with high
holding times.

* Adaptive Tasks access a few views with short holding
times then create new views with high holding times.




IFIP - September 1992 o 18

Future Directions and Work In Progress

e Create Version 2 DHC - Agenda and Task Management

Support
e Prepare Guide Book Based on Process Model/DHC

e Undertake Empirical Evaluation of Process Model

Study Support for Reusability

Active Enviroumental Support for Process Model




IFIP - September 1992 19

Conclusions

e To perform a given task, the decision viewpoint requires
fewer conceptualizations than the functional viewpoint.

e These conceptualizations are more precise in identifying
the relevant parts of the document base for revision.

e DBSD helps control the sometimes chaotic creative pro-
cess of software development.

e Non-functional requirements play an important role in the
problem solving process

e Explicit Process Model clarifies roles for Software Engi-
neers, Managers, Operators and Software Tools.

e Software Engineering Environment should support Pro-
cess Model.

e Software System should be instrumented to collect infor-
mation to validate/refute critical decisions




20

>
>
e
-
-

D — oo

HypeoerCase

N

i.ibrary of Componeng C1
Cc2®
Cn
E l Compositional k (V1]
(Tv2 ]
Set of Decisions [1v3 ]
(Lym]
E ’ Generative K
vt |
Set of D;cusnons Tva
Process of
eneration
vk 1

Models of Reuse

T Decision~Based Software Development : Design and Maintenance

Old Dominion University ]



IFIP - September 1992 21

Closure

Ideal closure: exactly those portions of the document base
which are relevant to the task.

Actual closure: depends on the structuring method and
the granularity of view point it imposes on the document base.

Precision:
The decree of match between the actual and ideal closures.
o

Relevance: The percentage of the actual closure which is in
the ideal closure. One minus the density is a measure of
the “noise” in the actual closure.

Oversight: The percentage of the ideal closure which is not
in the actual.




(8]
(8}

IFIP - September 1992

Abstraction

The representation of a set of related concepts as a single
unit. If this representation helps in the understanding of the
set of concepts then it is an appropriate abstraction.

Size: One measure of an abstraction is the size of the problem
it conceptualizes. The metric used in our evaluation is the
number of Lines Of Code (LOC) related to the abstrac-

tion.
More LOC = \lore Abstract.

Power: For a given task, the number of abstractions needed to
understand and solve that task is a measure of rhe power
of the set of abstractions.

Smaller Sets = More Power.




IFIP - September 1992 24

Using DBSD Approach

e Make the Solution Visible.
Work Through a Particular Task.

e Identify the Problems That Each Solution Solves.
¢ Gencralize the Problem, if Appropriate.

e Uncover the Underlying Assumptions Which Justify the
Particular Solution.

o Develop Alternate Solutions.
e Justify the Assumptions. Pick the “Best™ Solution.
o Link the Identified Problems and Justifications.

e Place Incomplete Decisions on Project Agenda




IFIP - September 1992

[RV]
Ot

Cost - dwindling budget - increased demand on increasing productivity
and reliability. - competiveness.
loss of intellectual control of process. Points:

paradigm justification
DBSD

DHC

Evaluation purpose
results

methodology and process

- management controls temporal aspects, resources and defines non-technical
constraints - interleave VG - management is process of making decisions -
dynamics of decision making - solution w/o problem, SP wo alternates, al-
ternates wo solution, no justifications - degree of satisfaction If time show
them performance req. and DO without solution and justifications are hy-
pothetical.

l.

)

3.

4.

5.

do nothing

change req.

temporary release from req.
tune program

redesign

-DO create interleave for this set of decisions. No justifications for choosing
yet. limited resources could push for 2 or 3. TO choose between 2 and last
two need to know if it scales (complexity constant, linear, exp.). Points up
that alternates are part of the agenda.



Decision Based Software Development in the Rceuse Arcna

Chris Wild Kurt Muly
Danicla Rosca  Chenglin Zhang — Tammy Taylor Chris Cowles

Department of Computer Sciencee
Old Dominion University
Norfolk, VA 23529-0162

Work sponsorcd by grants 126581 from NASA Langlcy Rescarch Cenier, grant 526291 from

Virginia's Center for Innovative Technology and grant 526292 from Paramax



g ————— Department of Computer Science —— ODU

OUTLINE

® Software reuse terminology
® Decision Based Software Development Approach

® Decision Based Software Development in the Reusc
Arena

Software Reuse Workshop, April 1993 2



Department of Computer Scicnce ODU

2

ABSTRACTION

What type of software entities arc reuscd and what abstractions
are used to describe them?

Reusable code:
® reusable data—centered components (Ada: stacks,lists. strings,

queues,sets, trees,etc);
® reusable function—centered components(sorting, searching).

Software Schemas (formal extension to reusable software components) :
® the emphasis is on reusing abstract algorithms and data
structures
® cach schema has a specification that includes:
® o formal semantic description of the schema
® assertions for correctly instantiating the schema
(constraints on the variable part of the schema)
® assertions for the valid use of instantiated schema
(preconditions. postconditions)

Application Generators:
® rcuse complete software system designs (expert systems

generators, compilers generators, etc.)

Very High—Level Languages:

® can be viewed as specification languages when compared with
high-level languages (executable specification languages)

® mathematical abstractions (set theory, constraint equations)

Transformational systems:
® dcvelopment histories that can be replayed (PADDLE. Glitter)
® transformations : mappings from syntactic patterns of code into
functionally equivalent, more efficient patterns of code.

Software Architectures:
® large grain software frameworks and subsystems that capture

the global structure of a system design

Software Reuse Workshop, April 1993 3



% ——— Department of Computer Science ODU

SELECTION

How are reusable entities selected for reuse?

Reusable code:
® techniques for describing the components (formal annotations —

Anna)
® techniques for classification and retrieval (different indexes)

Software Schemas:
® sophisticated searching at the abstraction specification level

(PARIS)

Application Generators:
® libraries of application generators have not been developed yet

Very High-Level Languages(VHLL):
® selecting the VHLL that is most appropriate for a particular

application
® seclecting the language constructs that best represent the

application

Transformational systems:
® cxpert systems tcchnology to select from a library of

transformations (Glitter)

Software Architectures:
® [ibrary techniques

Software Reuse Workshop. April 1993 4



ODU

Department of Computer Science

2

SPECIALIZATION

How are generalized entities specialized for reuse?

Reusable code:
® by directly editing the code
® parameterized macro cxpansions
® Ada generics
® inheritance

Software Schemas:
® substitution of language constructs, code fragments,

specifications, or nested schemas
® choosing from a predefined enumeration of options

Application Generators:
® by providing an input specification. The techniques used

depend on the application domain abstractions: grammars, regular
expressions, graphical languages, interactive dialog.etc.

Very High~lLevel Languages:
® parameterized language constructs that are specialized by

recursively substituting other language constructs

Transformational systems:
® not an issue, typically

Software Architectures:
@ horizontal: source—to—source transformations (optimizations in

Draco)
® vertical: component refinements (alternative implementations

with different performance characteristics)

Software Reuse Workshop, April 1993 5



Department of Computef Science ODU

INTEGRATION

How are reusable entities integrated to create a complete software
system?

Reusable code:
e module interconnection languages

Software Schemas:
¢ module interconnection languages
® semantic specifications to compose schemas:
® horizontal composition corresponds to schema

composition using nested schemas
® in vertical composition higher—levels of abstractions

are created.

Application Generators:
® do not require integration

Very High~Level Languages:

® cncapsulated computation (computation within a function is
influenced only by its input parameters and rcturn values from the functions
it calls)- PAISLey

® order—independent specification and compiler—generated
control flow and data flow - MODEL

Transformational systems:
e implicit in the order in which the transformations are applied

Software Architectures:
® special purpose module interconnection language

Software Reuse Workshop, April 1993 6



-
-
-
-
-

Department of Computer Scicnee Oobu

Deccision Based Software Development

= Model the Process of Software Developmient. and Evolution as

a Sct ol Interrelated Problens Solving Episodes.

= Record Decisions Made and Their Relationships to Other Dee-

cisions and to the Prodnets of Software Development.
Why Problemn Solving?
e Supports Process Across Life Cyele

e Supports Non-lunctional Requirements Resolution

Process Orientod
Why Record Decisions

Decision Rationale Difficult to Reverse Engincer

Record Promising Alternate Solutions and Dead Ends

Engineering is Trading Off Decisions

Soltware Maintenance is Changing Decisions

Soltware Rense Workshop, April 1993



Skvrr
S—

Deccision Structure View,of Document Basc

. P ’
juirement - Specification < Architcctural " Detail Design
) ' Design ) '
\\ .
: .
N ’
N ’
N /
) ;!
A

.
‘ PrnhlcqvSpncc

'
=

/ :
‘ - +
\ — / . . -
A ! \(l\ Design doc.
:’ ‘ b d
e g SIS
S 2 ', ]\
l‘ "I
" ! I|
. Spec. doc /’ .
R 4
AN '
P R '

|
1 l
' |
- !
' \
- \
. \
- \
. \
- \
|' \

Sowree

Hser
manual

Decision—Based Softwarc Documentation

Software Reuse Workshop, April 1993

Department of Computer Scicnce — 0ODU

Legend

Vicew Link

-~
Justification
— e -
Dcpendency
—_—
Decision
e
Alt. Link
R
Alternate
’roblem
Decision
Vicw

C ot



Wiry

Department of Computer Science

ObU

AR = TE 3]

;—ll.oli aw Sl ‘B

NN JPR.TY

B
& Mremrty

[

1 o, b F8l et bt o o

17 Dhmmne e [rlewy boug 18 be due,
WIS Jda & TT™NT |

TICMTIRT 38 O 1 X XU IOFECS % XOR TN,

[T B o U BT TR TIRETY NI TTH
UL AL BT AU o

LR Y

M MO HTLEY ame N2 N TIPY N[),
LR IR
N SLoNw M -ty
MAT 3| 10 Loview

.
v

'

'

'

'

v (RL TAIOPL" 161 [LENmD. Alm-

: ot e T et s e ]
) _—

'

'

'

'

'

IS S S

KU IIT ML A TR 1

mL°s LANTAL A, F13]
¥ ey o ye T,
Fl!l’b'n—-ﬂ -

WL T neT
e & g e s

[ZRLRIL VTN X1

LILE SN
A W1 e,
Lt L ST T
FPA NL-DRIE 10 P-DeIY
P& J(WR 10§ SHR IR
LB L ANL RS R ST £ 30
(LY TRTT
T 10 MRINI-[EIAIg 4 1S,
e o oo L NS o Tott fromy
[ 4 LU TR e BT NI
I N T
LIPS R TN

rerell dncislon rosmaie
onmelid
LS T

[ 11

LI TR
WA s,y
N ta tus reimr
LTI
NACTYRNT 22 IRV S 2

" LR TNNTIRY
amigny

n-r
MW On reie-SIrY . e

LI U LT N TRV EY

21 0 Y,

WL I6 P ITn a,

NG P ANEL ) 18 N1,

A TR I i

Wal MYCE Jmen ()
g Ctemey 1P TICY W1t 1B A CHOYS o £,
R AR IRL I A Y L, )

UL TR, TTT I S S IS T
L)

1Y

t
'
'
]
[l
'
'
¢
'
v
‘
|
'
[
'
)
-1 [
.
.
0
]
'
1
'
0
'
t
'
'
'
'
[

SRRLASSRA NS L SN

PN ) st Fhie I svald b et e e e e ire tharge ramerl for v sl iy e F0d Y st o ire e T st stamet
12 1name vararde am dets tn Svtow prive Sarges by Mste, ML (mee (¢ aajarsirad oy strr ing 'Pa miow vma 10 on (evtaved Fils woaeod

v bay, solarting (heos p-ire shamgee Airh me s,

ALVIFIEPTION: Move Awturoe 15 ants ta the roartect Phat tha o tamns tovker 16 starb mobus (ons

—vymve \

cloe ma AIPRAT 1), Mo s amdt a1em mol

ol o tlne - lee R s ge

O O XOM TN, KWK I LAY T T TR LT, STTHES

R Y N Y R Y Y X e Y X N X XY

f s s ———— s~

Soltware Reuse Warkshop, April 1993

ORIGINAL PAGE
OF POOR

IS

uTyY



P
-
-
-
-

|

— ODU

———— Department of Compuler Scienee

Software Maintenance Life Cycle

Understanding:
What problems are addressed?
How are they solved?
Why was Lhis solution chosen?

How arve the parts of the svsteninterrelated?

Impact Analysis:
What parts of the svstenn are affected by a decision?
What decisions impact a particnlar part of the system?

What Level of Bflort is Requared?

Redesign:
Justify and Comunil Redesign
What parts of the system can be revsed?
What parts are now obsolete?
[s the modification consistent with the rest ol the system?

Validation:
Does the System satisfyv its requirements?

If not. which decisions mnst bhe changed?

Soltware Rense Workshopo Aprl 1993

ORIGINAL PAGE 1S
OF POOR QUALITY

10



P
-
-
hJ
b

OBy

Department of Compuler Science

Process Modeling

Process:
o Set of activities
e Relationships among Activitios

Team Structare and Responsibilitics

®

e Role of Software Engincering Environment
o Dolicy and Coustraints

o Resource Management

Process Model: Formalization of a design method which
o Provides notations amenable to analvsis
o Encompasses hreadth and depth of software development
o Assists inmanagement - defines milestones
J f;mvidvs henristics/algorithins [or well-understood sitiations

Software Rense Workshop, Apeil 19493 I

ORIGINAL PAGE IS
OF POOR QUAUTY



P g
-
-
-
]

B

—————— Department of Compulter Science ————— 91919/

Summary of Recent Experiments

Data Collected over 43 Sessions Resolving 10 Mamtenance Tasks.
{

Additional Documentation Effort for the Decision Structure is
about 10%.

About S0% ol Tine was Spent. in Reading This Docnmenta-
tion.

About 90% Of The Accesses To The Docmment Base Were
Through The Problem Views,

The failure rate of reused code was 5 times less than new code.

Changing «eciston on cursor position i sccond window in-
volved the deletion of one problem whose view coutained 315
LOCs in 25 hunctions (containing a total of 892 LOCs).

Corrective Maintenance tasks are more localized with high
holding thnes,
Perfective Maintenance tasks access many views with high
holding times.

Adaptive Tasks access a few views with short holding Lines

then create new views with high holding times,

Soltware Reuse Workshop, April 1993 e



Wwirr

——————— Departineni of Compuler Science = 01919)

Closure

Ideal closure: exactly those portions of the docmment hase which
arc relevant to the task.
Actual closure: depends on the structuring method and the

eranularity of view poiut it imposes on the doenment base.
Precision:
The degree of matel hetween the actual and ideal closures,

Relevance: The percentage of the actual closure which s i the
ideal closure. Oune minus the density s a measure of the

“noise”™ m the actual closure.

Oversight: The percentage of the ideal closure which is not in the

actual.

Soltware Rense Workshop, April 1993 I3



-
-
-
-
-

Department of Compuier Scicnce ——— ODUJ

kN

Abstraction

The representation of aset of related concepls as a single unit., If
Lhis representation helps in the nnderstanding of the set. of concepts
then it is an appropriate abstraction.

Size: One measnre of an abstraction is the size of the problem

it conceptualizes. The metric used in onr ovalnabion is Lhe

munber of Lines Of Code (LOC) related Lo the abstraction,

More LOC = More Abstract.
Power: For a given task, the number of abstractions needed to
nnderstand and solve that task is o measture of the power of
the set of abstractions,

Smaller Sets = More Power.

e ey

WA QU R

oR or
ot

Software Rense Workshop, April 1993



ODU

Department of Computer Science

DBSD IN THE REUSE ARENA

Abstraction: Which entitics do we manipulate and store?

e high level objects(specifications,requirements, designs) and
source codc (sce page 31)

e in DBSD thcse objects arc represented as: problems,
alternatives, cvaluations, decisions, justifications (sce pages 17.18.19)

e (hic granularity of the objects rcuscd is no influcnced by the
syntactic constructs of the source language uscd. but by the abstraction levcel

ol decisions made.
e DBSD allows not only the reuse of completed products, but also

to rcusc or replay the process uscd to obtain the product.
e DBSD is not centered on functional decomposition or other

(raditional mecthods, it provides a complementary approach by s
non—lincar vicw of the problems.

Sciection: How do we best identify the components most relevant to a

given user’s needs?
What kind of taxonomics and scarch stratcgies do we provide?
e Library techniques: faccted representation, scarch
with a similarity mcasure
e oraphical browsing (sce pages 20.21.22)
® liyperiext (sce pages 23.25,.26.27)

Software Reuse Workshop, April 1993



I‘
-

ODU

Department of Computer Scicncee

FUTURE DEVELOPMENTS

® Specialization: How do we customize a selected generic entity?
® sclecting a valuc from a precomputed list of alternatives

e transforming an abstract program schcma using a sct of
transformational rulcs

® inferring a valuc using a sct of heuristic design rules and/or
algorithms.

® Integration: What techniques of program composition do we use?
® domain—spcecific rules

® cxpert systems technology

® Management: assessment of reuse

® associating vicws to source and documents we can exactly
identify thosc components relevant to a solution .

® we can identify all the components impacted by a view and
cstimate their size, complexity, efforts,ctc.(sce page 32)

® from a spccific retricved component we can sclect only the
rclevant parts to the current problem.

Software Reuse Warkshop, April 1993 16



1144

Department of Compuler Scicnee ObU

DHC OUTPUT IN LATEX

PROBLEM: reengineering_problem

Develop a methodology and supporting tools to port applications from a
source machine to another target machine, to translate from language A to
language B and to enhance existing applications.

ALTERNATIVES: 1) Develop a fully automated, non-interactive sys-
tem for specific cases. (for example, an Expert System for transforming a
COBOL program) 2) Develop an expert system using only DHC. 3) Develop
an interactive system using both DHC and Refinery. 4) Non-antomated sys-
tem for a specific case.(like "awk™)

DECISTON: 3) Develop a Reengincering_process_model, a running, ¢Mec-
tive DHHC_prototype, make Refinery part of the environment, and link DHC
and Refinery into a Unified_environment.

JUSTIFICATION: Dictated by : a. the availability of DIIC and Refin-
ery; it will be a matter of evaluation (see Evaluation_problem) b. validation
of the above decision

EVALUATION:

UPLINKS: apply-and_improve_DBSD_methodology

DOWNLINKS: porting_problem translating_problem enhancing_problem

PROBLEM: reengincering_process_model

Develop a process model for porting,translating and enhancing applications
ALTERNATIVES: 1) Develop separate methodologies for: a. Porting to
different dialects of COBOL(e.g. Honeywell to Microfocus) b. Enhancing
applications (e.g. using SQL langnage instead of file operations) c¢. Trans-
lating into another language (e.g. COBOL to Ada) 2) Develop a gencral
methodology for everything.

DECISION: 1)

JUSTIFICATION: The process is too little understood to fully develop
a general methodology for everything.

EVALUATION: We assume that the existing application is partially
DHC-ed.

UPLINKS: simple_porting

DOWNLINKS: process.model_implementation process_model_notations
get_Refinery_process_model get DHC_process_model_for_Rengincering com-
bine_.DHCR/finery_process_models

Software Rense Workshop, Apiil 1993



Wiry

—————— Departiment of Computer Scienee ————— ObU

DHC OUTPUT IN LATEX

PROBLEM: reengincering-problem
Develop a methodology and supporting tools to port applications from a
source machine to another target machine, to translate from language L1 to
language L2 and to enhance existing applications.
ALTERNATIVES: 1) Develop a fully automated, non-interactive sys-

tem for specific cases. (for example, an Expert System for transforming a

COBOL program) 2) Develop an expert system using only DHC. 3) Develop
an interactive system using both DHC and Refinery. 4) Non-antomated sys-
tem for a specific case.(like "awk”)

DECISION: 3) Develop a Reengineering-process-model, a running, effec-
tive DHC-prototype, make Refinery part of the environment, and link DHC
and Refinery into a Unified-environment.

JUSTIFICATION: Dictated by : a. the availabhility of DHC and Refin-
ery; it will be a matter of evaluation (sce Evaluation-problem) b. validation
of the above decision

EVALUATION:

UPLINKS: apply-and-improve-DBSD-methodology

DOWNLINKS: porting-problem translating-problem enhancing-problem

Solhwnre Rewse Warkshop, April 1993



Wirr

Department of Computer Scicnee ODU

DHC OUTPUT IN LATEX

PROBLEM: reengincering-process-model

Develop a process model for porting,translating and enhancing applications
ALTERNATIVES: 1) Develop separate methodologics for: a. Porting to
different dialects of COBOL(e.g. Honeywell to Microfocus) b. Enhancing
applications (e.g. using SQL language instead of file operations) c. Trans-
lating into another language (e.g. COBOL to Ada) 2) Develop a general
methodology for everything.

DECISION: 1)

JUSTIFICATION: Thec process is too little understood to fully develop
a general methodology for everything.

EVALUATION: We assume that the existing application is partially
DHC-ed.

UPLINKS: simple-porting

DOWNLINKS: process-model-implementation process-model-notations
get-Refinery-process-model get-DITC-process-model-for-Rengineering
combine-DIHC-Rfinery-process-models

Soltware Reuse Warkshop, Aperl 1993



A
-
-
-
~-

B

— Dep

artment of Compuler Scicnee

— ODU

[:lpply—:’\nd—irnJl |

F‘eengineeriﬁl

N

[long-term-go]

enhancing-pr

Itranslatin g—"

reverse-portﬁ

Eorting-probj

|reuse-—proble “

reengineerin

apply-proces

market-study

\

simple—porti

CrsEoot]

ovaluation-p

\

Saltware |

reuse Workshop, April 1993




——
% —————— Department of Computer Scicnce — ODU

combine~-DHC&
.lnew—code—add
/"prooess—mode )
et-Refiner 1-
[reengineerin]< g Yy . Imanua nﬂ,erJ Unifod_Envil
get-DHC—procJ ‘
/ [transformat.i] \
[:lpply-proces] ‘ log-UE
R I;)rooess—m odal closely—oour;
Frernunsnwm-'“
loosely—coup
everse—port fmarket—studﬂ Iloé—PM ‘
[analyze—log’—J
[demonstrate—
- ‘ analyze-log—] ‘
lmple—portil CASE-tools| reengineerin] [log—R efinary
[demonst.rat.e—J lanalyze—log—]
STINATY-Al0
levaluation—p, [reengineerinl [analyze—log—]

[ot.her-toolsl

statistical—]

Solfware Reuse Workshop, April 1993 2



\Aid4

‘?g ————— Departiment of Compuler Scicnee ————— QDU

wdng I R U R N N I

[conditional—

Tt I ] |
Unified~-Envij

understand-R

[problem-loca

view—fllteri "

log-UE||

o]

&)g—R eﬁnary]

/ / I[modify-agend|

Epg‘rade—DHC} ;problem—solv] [evaluation—m]
unique-names]
/.
interface-be [tool-for—upg] entry—deﬁni]

dhc-evaluati |field—defini]
lupgrade-DHC-|
{Preserve-dec| [Precision—of]

empty-field-

Softwnre Reose Workzshop, April 1993




OWOWDNOUAGINF O Ww uwe e — e o

»
-

-
-
-

|

———— Departmenl of Compuler Science

reengineering-problem
reengineering-process-model
evaluation—-problem

logger
statlistical-analizer

applg—process—model—to—trans?ormation—task

Preserve-decision-structure-in-AST
Precision-of-decision-transformation
new-code-added-by-transformation-rule
transformation-rule-decislon-views
manual-after-transformation
tool-for-upgrading-DHC
robustness—of-DHC
order-of-objects-editing
insert-agenda-1list
modify-agenda-list
entry-definition
field-definition
‘empty-field-definition
applg—and—improve—DBSD—methodologg
long-term-goals
reuse-problem
Al-applications
porting-problem
enhancing-problem
translate-problem
simple-porting
complex-porting
market-study
reengineering—contracts—characteristics
reengineering—solutions—characteristics
process-model-implementation
notations-for-process-model
get-Refinery-process-model
get-DHC-process-model-for-Rengineering
combine-DHC-Ref inery-process-models
analyze-log-on-Process-Model
analyze-log-on-Unified-Environment
analyze-log-on-DHC
analyze-log-on-Refinery
demonstrate—process
demonstrate-DHC
demonstrate~-Refiner

— O

jacs: Emacs @ wuﬂtemberg e D AP IR RN

nY-Emacs: dhe-index. idx. - o (Fundamental ) ====fnn-—==--————"—----
:uplink. d:downlink, c:current, l:latex, g:graph, f:form, p:process, 1:index,

e i Sttt e -.'——

arhoshop, April 1993

Soltwme Renne W

PAGE 13
Oﬁﬂiggt‘qupmfr'

OF

23



— ODhU

—————— Department of Computer Scienet

ditional Life Cycle

amacs: Emacs @ wurttambery ENGENcESI RN
Process Model for Tra

Kurt Maly and Chris Wild

Short Form

Customer_requirement_resolution——) Software_development 1! Customer_feedback

-

Internal_development —-> Software_development

. Software_development --> (Understanding_needs MA,SE
Modify_or_create_new_task SE
Calculate_effect_and_costs MA.SE
stign_resources_to_schedule MA
Transfer_task_to_problem_space SE)

|| (Review_meeting_reports_and_progress MA, SE
Delete_decision_and_replace MA,SE
Implement_meeting_decision MA,SE)

4. Understanding_needs --> Exploring_needs |1 add_to_report MA.SE

5. Exploring_needs --> Requirements_definlition Create_and_add_new_task_problem 3\
Find_and_add_reusable_node

6. Requirements_definition ~=> (locate_problem | make_new_requirement)
Understand_problem_links

7. Understand_problem_links --> f(Visit_and_read_node dependency_up)
| terminate_at_node_closure_relevant_nodes}
I ( Justification_from
| justification_to
| dependency_up )

8. Visit_and_read_node --> read_description document_view Read_document Read_jud

stification

9. Read_document --> {(switch_view | scroll_view | emacs_commands

=% %=Emacs s dhe= rocess . 1o - R e (Fundamort sl ) emeelimti—eee————— e e e —-=
u:uplink, d:downlink. c:current, 1:latex,. g:graph. f:form. 1|

Solteare Reone Workshop, April 1991 24



-
-
-
-
-

Obu

Department of Compuiter Science

»] emacs: Emacs @ wurttembery [EERREEEET -t
ROBLEM: reengineerting-problem

Develop a methodology and supporting tools to port applications from 3 source \
:achine to another target machine. to translate from language L1 to language L2\

and to enhance existing applications.
ILTERNATIVES: 1) Develop a fully automated. non-interactive system for specifi\

. cases.
for example, an Expert System for transforming a COBOL program)
2) Develop an expert system using only DHC.
3) Develop an {nteractive system using both DHC and Refinery.
4) Non-automated system for a specific case.(like "awk")
IECISION: 3) Develop a Reengineering-process-model. a running. effective
JHC-prototype, make Refinery part of the environment, and link DHC and
‘efinery into a Unified-environment.
‘USTIFICATION: Dictated by :
a. the avallability of DHC and Refinery: 1t will be a matter of evaluat\
on (see Evaluation-problem)jj
b. validation of the above decision

-VALUATION:

IPLINKS: applg—and—improve—DBSD—methodologg
JOWNLINKS: porting-problem
translating-problem
enhancing-problem

pE— Y p—— T

el (R prcdamantal )

=%%~Emacs s dhc
10 link selected

25

Software Reuse Warkshop, April 19923



S
5@ ———————— Department of Compuicr Scienee

"ERNATIVES:
a.

fons)
c.

CISION: 1)
STIFICATICON:

ethodology for everything.
We assume that the existing application is partially DHC-ed.

ALUATION:

LINKS: simple-porting
WNLINKS: process-model-implementation

process-model-notations
get-Refinery-process-model
get-DHC-process-model-for-Rengineering
combine-DHC&Rfinery-process-models

amacs: Emacs @ wurttemberg

JBLEM: reeng1neer1ng—process—model
welop a process mode

Porting to different dialects o
b. Enhancing applications (e.g. using sQL language instead of file oper\

Translating into another language (e.g.
2) Develop a general methodology for everything.

c==mEmace™ -dhe=text, thnpse-

— ODLU

1 for porting,translating and enhancing applications

logies for:

1) Develop separate methodo
f COBOL(e.g. Honeywell to Microfocus)

COBOL to Ada)

The process is too little understood to fully develop a general)

S Fpndament Al ) eemen ) | seeese——— ----——-—--—-—mi

neare Rense Warkshop, Apiil 1993

Sof



-
-
-
-
~-

l

aﬂlncnl(ﬂ'(kuannkn'Scicncv

7—————————-¢)cp

acs: Emacs @ wurttemberg S
_EM: get—DHC—process—model-For—Rengineering
ist the DHC process model to the porting problem
INATIVES:

SION:

IFICATION:

UATION:
NKS: reengineering-proce

ILINKS:

ss-model

g

1:latex. g:graph.

=Y Y=Emacs: dho=text, tn

(Funﬂamental!----ﬂlr--

:form,

— ODhU

----—-nn—-’»-.—.—:—.—.{.’-—

p

(ruplink, d:downlink, c:current.

© Warkshop, Aprl 1993

Saoftw e Rewe

27



W“irr

Department of Computer Scicnee OnDu

(¢} wmacs: Emacs @ warttamberg

DHC LOGGING FORM

Name: Chenglin Zhang : Commenta: an experimental logging form

Task o - Activity Process Object Process Model Start Time ) o End Tl;; _____________________
re—eng process write-document BNF rules re-engineering Feb 1B.1993 8:00p Feb 18.1993 11:10pm8&
detalled process wrlte-document BNF rules dhc process FebL 19,1993 9:30am Febb 19,1993 [2:00pmaR
Unlaque-name write-program Lisp source dhc-process Feb 20.1993 7:20pm Feb 20.1993 12:30pmA8
dhc-browsing-demo Change_problem Problem dhc general Wed Apr 14 12:5%:4% 1993 Wed fApr 14 12:56:23 199388
Bchc-brows Ing-demo Add_problem Problem dhc general Fri Apr 16 16:16:32 1993 Frt Apr 16 16:16:53 199388

e L G I T NS THUIAAMEAP %) cmmht| | m e e m o st

EIS
RIGINAL PAG

Soltware Rense Waorkshop, April 1993 25



“"'

g ————— Department of Computer Scicnee —— ODU

dependency
rclations

justilication

justification

\ .
\ problcm tags lists

= ‘
\

( \
\ / ———I—-—— e~ ey
e pd \\(/

task
rclations

—_———

w new problem not obtained from modifying existing problem.

Key: task relations
problem tags lists ~ ——————=—~
dependency relations —»
justifcation ——_———p

Tentative task problem space and existing problem space.



A
> d
-
-
.

Department of Compuler Scienee

DHC Process Model

fiwarc_development --> tasksg g4 > Understandingse Ma [*requircments_definition®/
task_root: task_problem > {problem) /*list_of_rcusable candidatcs*/
Task_problem_solving > {task_problem]) M first_level _decomposition®/
{Assessmeniy, se > (iask_root, cffort, task_rool.sizc, task_root.risk)
Change_task_dccision > task_root}
Assign_rcsources > schedule
Transfer_task_to_problem_spacc > agenda
{agenda; schedule > Solve_problemge > agenda
Review_mceting > meeting_notes

Implement_mccting_decision > schedule, agenda)

Soltware Hease Workshop, April 1993

Obu

30



sartment of Computer Scicnee ™ Obu

o
P4
-t
-
-

R

_— D

DHC Process Model

yring --> Requircments_definition || Reusability_scarch
odc > add_reusable_node > task _problcm.rcusc_list

--> criteria > search_space Sclect_n
¢ > {task_probicm]

ability_scarch
{nodc € rclcvant_nodes) > (Mmlify_cxisting_nod

< _problcm_solving --> task_root > V
{task_root > Crcalc_additional_ncw_task > lask_problcm})

ask_problem > task_problem, task_rclation tag_subprohlems > node, task_problem >

«ify_cxisting_nodc --> node > create_t
1_fcaturc | Copy_gencric

(Add_ncw_fcature | Delete_old_feature | Changc_ok

| Add_rcusc /* for all nodes on reuse list]

dd_rcuse --> change_dcscrip(ion ndjust_justiﬁcmion adjust_reuse_task_problem add_to_reuse_l'm

31

Soltware Renne Waorkshop, April 1993



-
-
-
-
~~

Department of Comipuicr Scicnee ——— ODUJ

LW

DHC Process Model

cessment --> Calculate_Direct_Effect Calculate_Indircct_Cost Review_Datay,,

culate_Dircct_Effect --> V [1ask e task _problem) V {task_node € task.gencric U task.out U task.rcusc }

> calculate_node_size calculate_risk_effort > {task_nodc)

V {ask_nodc € new) > get_effort_risk_size_estimates > ( task_nodc)
V {ask_nodc € modify) > Asscssment > {task_nodc)

(task_node} > calculate_task _problem_size > task

/* for cach category add the number in the subproblem nodes

o obtain the reievant figures in the task problem node*/

(task_nodc) > calculate_task _problem_effort > task
/* this is the sum of the cfforts in the subproblem list */

(task_nodc} > calculate_task_problem_risk > task
/* the sum of the risks in the subproblem nodcs */

{task]} > add_up_direct_costs > task_root
culate_Indirect_Cost --> relevant_node > get_closure_list_justification_to_from > ripplc_list: {problem)
{(/* get the worst possiblc impact by calculating the wransitive impact closurc for the justification limits */
V {nodc e ripple_list) > calculate_total_node_size > {uv;k_problcm.uppcr__houn(l}
/* add up all the mevrics, # problems, #1.OCS., ctc, for all the nodes in the closure */
/* allow for intcractive cstimaltcs */
[V (node ripple_list) > (Sclect_node cnlculnte_total_node_size) > {task _problem.Jower_bound)
/* add only sclected nodes to the calculation */

(task_problem} > add_up_indirect_cost > task_root

Soltware Reuase Waorkshop, April 1993 32



&
-
-
-
-

'

ACTIVITIES

(non-terminals)

Add-conditional-decision
Add-info-to-node
Add-new-{eature

Add-problem
Add-unconditional-decision
Adjust-agenda
Adjust-and-add-reusc
Assign-resources-to-schedule
Calculate-Direct-Tiffect
Calculate-Indirect-Cost
Calcntate-ellect-and-costs
Change-conditional-decision
Change-old-feature
Change-problem
Change-unconditional-decision
Copy-generic
Create-additional-new-tasks
Creale-and-add-new-task-problem
Customer-requirement-resolition
Delete-decision-and-replace
Delete-old-feature
Fxploring-needs
Pind-and-add-reusable-node
(GGenerate-problems
Lnplement-meeti neg-decisions
Internal-development
Locate-decision

Locate-parent.

Locale-problem
Make-decision-using-alternatives
Make-node-and-add-info
Modify-or-create-new-task
Modifv-task-node
Pick-nade-link

Read-document
Read-justification
Read-node-deseription
Requirements-definition

Software Rense Warkshop, April 1993

———— Department of Computer Science

——— ODU

Review-agenda
Review-mecting-reports-and-progress
Review-reports-agenda-and-schedule
Select-and-read-node
Software-development

Soive-problem
Transfer-task-to-problem-space
Understand-problem-links
Understanding-neecds
Visit-and-read-node

PAGE 1S
g“:\?gg‘; QUALITY

(WS ]
‘)



&
-~
-
-
-

——— Department of Computer Scicnce

FEATURES

(terminals)

add-agenda-problem
add-justification
add-reuscable-node
add-to-generic-list,
add-to-modify-list,
add-to-new-list
add-to-notes

add-to-ont-list
add-to-report
add-to-reuse-list
add-up-direct-costs
add-up-indirect-cost
adjust-justification
adjust-reuse-tas k-problem
browsing-agenda
calculate-node-size
calculate-risk-effort
ca.]ru!a.f,o-ta.sk-prol)lmns—em)rl.
caleutate-task-prohloms. risk
calen late-task-problems-size
calculate-total-node-size
change-description
conditional-decision
copy-new-generic-task-problem
create-new-problem-node
create-new-task-problem
create-task-prohlem

decision

deleto-agenda- problen;
delete-problem
delete-task-problem
dependency-down
dependency-up
describe-alternatives
describe-prohlem
document-view
emacs-commancls
fill-in-description

get-closu re-list-justify-to-form
get-effort-risk-size-estimatos
get-parent-node

Soltware Reuse Warkshop, April 1993

Obu

give-justifications
Justification-from
Justification-to
key-subproblems
liuk-justification
locate-prohlen
locate-decision
locate-parent
make-decision
make-new-replacement,
madify-agenda-problem
problem
produce-sehedyle
read-deseription
rescarch-problem
review-agenda
review-report
review-schednle
seroll-view
select-alternatives
skip

swileh-view
take-agenda-prohlem
task

Lermi nate-at-node-closire. relevant-nodes

transler-tentative-Lo- problem-space

nconditional-decision
write-and-lin k-docunmentation

non-dhe FEATURIES

ACCeSS-Teport,
add-direct.costs
add-indirect-costs
add-to-repart,
calculate-node-size
caleulate-risk-offort
calenlate-task-problem -effort,
caleulate-task-problom- node
caleulate-task- problem-risk
CHaes-cogn lll.’l.ll(ls

get-eflorg- node-size-estimates
make-new. recuirement,
produce-schednle
review-schednle



-5
-
-
-
-

'

ACTIVITIES

(non-terminals)

Add-conditional-decision 1
Add-info-to-node 29
Add-new-feature 13

Add-problem 42
Add-unconditional-decision 10
Adjust-agenda 47
Adjnst-and-add-rense 17
Assign-resonrces-to-schedule 30
Calenlate-Direct- Elfect. 21
Calculate-Tndirect-Cosl 22
Calculate-efTect-and-costs 20
Change-conditional-decision 38
Change-old-leature 15
Chauge-problem 43
Change-unconditional-decision 39
Copy-generic 16
Create-additional-new-tasks 18
Create-and-add-new-task-problem 19
Customer-requirement-resolution |
Delete-decision-and-replace 27
DNelete-old-feature 11
Exploring-necds 5
Find-and-add-reusable-node 26
Generate-problems 35
Implemént-meeting-decisions 37
Internal-development. 2
Locate-decision 16
Locate-parent 45
Locate-problem <4
Make-decision-using-alternatives 36
Make-node-and-add-info 28
Modify-or-create-new-task 11
Modify-task-node 12
Pick-node-link 25
Read-document 9
Read-justification 1)
Read-node-description 24
Requirements-definition 6

Software Reuse Workshop, Aprit 1993

——————— Department of Computer Scienee

— ODU

Review-agenda 48
Review-mecting-reports-and-progress 33
Review-reports-agenda-and-schednle 34
Select-and-read-node 23
Software-development 3

Solve-problen 32
Transfer-task-to-prohlem-space 31
Understand-probiem-links 7
Understanding-needs -1
Visit-and-read-node 8

©
(02
e ?;9"‘\'\‘*
0"\ QOOQ



D
-~
-
-
-

FEATURES

(terminals)

add-agenda-problem
add-justification
add-reuseable-node
add-to-generic-list
add-to-modifly-list
add-to-new-list
add-to-notes

add-to-out-list
add-to-report,
add-to-reuse-list
add-np-direct-costs
add-up-indirect-cost,
adjust-justification
adjust-reuse-task-problem
browsing-agenda
calculate-node-size
calculate-risk-effort
calculate-task-problems-efTort,
calculate-task-problems-risk
calculate-task-prohlems-size
calculate-total-node-size
change-description
conditional-decision
copy-new-generic-lask-problem
create-new-problem-node
create-new-task-prohlem
create-task-problem
decision
delete-agenda-problem
delete-problem
delete-task-problem
dependency-down
dependency-up
describe-alternatives
describe-problem
document-view
emacs-comimands
fill-in-description

Soltware Reuse Workshop, April 1993

Department of Computer Scienee

get-closure-list-justify-to-form
get-effort-risk-size-estimates
get-parent-node
give-justifications
justification-from
justification-to
Key-subproblems
link-justification
locate-problem
locate-decision
locate-parent
make-decision
make-new-replacement,
modify-agenda-problem
problem
produce-schednle
read-description
research-problem
review-agenda.
review-report
review-schedule
scroll-view
select-alternatives

skip

swilch-view
take-agenda-problem

Lask

01910)

terminate-at-node-closure-relevant-nodes

transfer-tentative-to-problem-space

nconditional-decision
write-and-link-documentation



Preliminary Draft: 11/18/92

ATTACHMENT #2

Primary draft of the Process

Model for porting



Process Model

Writing Transformations

Reengineering -> taskCU > (Porting|Enhancing|Translating) > system

?orting -> UnderstandingMA,SE > d.task_root:d.task_problem
AssessmentMA,SE > d.task_root > Change_decisions >d.task_root
Assign resourcesMA,SE > d.schedule, d.agenda

Task_problem solvingSE > {d.task_problem}

{d.agenda,d.schedule > Solve problemsSE > d.agenda
Review _meeting > d.meeting notes

Implement _meeting decisions > d.schedule,d.agenda

Understanding -> Get_familiar
Get_familiar -> (First_pass|Additional pass)
First _pass -> (Read_manual|Sample_target|Compile_target)

Assessment -> /* for read manual choice */
source_manual:manual > read appendixSE >
idiosyncracies_source:idiosyncracies
target _manual:manual > read_appendixSE >
idiosyncracies_target:idiosyncracies
idiosyncracies (source/target) :idiosyncracies > compare differencesSE
> list_of transforms:transforms
list_or_transforms:transforms > Task problem solving
Task_problem solving ->
original_source:source > r.open > r.ast:ast
FOR_ALL x in list_of transforms:transforms({
x> {write_single_transformationSE
test _transformationSE
(debugSE | done)} >
transformation_rule_ list:transformation}

transformation_rule_ list:transformation > Ggnerate_target



Process Model

Using Transformation

cate_target ->

transformation_;ules:transformation > run_rulesSE >

target_source:source

move_target_compile > (list ox_errors | clean_compile)

FOR_ALL errors in list_of_errors{

errors> {(write trouble_reportSE | fix _manuallySE)}



Process Model Objects

Source = {lines of source code}
Manual = (reference guide, users guide, etc.)
Idiosyncracies = {language grammar rules or examples

specifying machine specific

implementations}

Ast = {abstract syntax tree}

Transforms = {mapping of idiosyncracies from one machine to
another}
Transformation = {rule for pattern matching to convert

existing pattern to new pattern}



ATTACHMENT #3

Meeting Notes



VVVVVVVVVVVVVVVVVVV\/VV\/V\/VVVVVVVVV

RV VVVYVY

av]

VVVVVVVVVVYY

Meeting Report: 1

Meeting Date: 26 March 1992
Meeting Location: 0ld Dominion University
Computer Science Department

Attendees:
0ld Dominion Paramax
Dr. Kurt Maly Tamara Taylor

Dr. Christian Wild
Scoshma Bokil

A. Opening Remarks:

Dr. Maly opened the meeting at 2:00 PM. He recommended
that Dr. Wild send a letter to the dean stating Ms.
Taylor’s status as a student. This is to avoid the
question of a possible conflict of interest since she is
the representative from Paramax to the Decision Based
Software Design/Refinery working group.

B. Current Status Review:

No agenda was provided. The following issues/points were
discussed.

1. At Dr. Wild’s request, Ms. Taylor questioned

Reasoning Systems as to the possibility of

recording line numbers in the abstract syntax trees
(ASTs) for a possible mapping between Refinery and
Decision Based Software Design (DBSD). Reasoning

does maintain line numbers and offered four
possibilities for accessing. The line numbers are

not recorded in the AST. An attribute would need

to be added in order to map to the decision view.

oblem: Retaining Decision Structure through conversion to AST and back

2. Assuming the line number attribute is added, Dr.
Maly questioned how the line numbers would be
mapped back to the source and decision view once
the transformation is done. Dr. Wild responded
that DBSD will have to look at the transformation
rule to see what happens and of course there will
not always be a one to one mapping of line numbers
to attributes as one decision can span multiple
lines/nodes. He also stated that most
transformations will probably be semantic
therefore, decisions will remain across the board.

Problem: {child of the above) how to maintain precision in the
transformation process

VVVVVVVVYVVY

3. Another area of concern that was discussed

Meeting Report
26 March 1992
Page 2

is how will the decision views be affected when
something is added during the transformation.
Initial thought is that this will require a manual



VVVVVVVVVVVVVVVVV\/\/VV\/\/VVVVVVVVVVVVVVV\/VVVVvvv

update to DBSD.

s>lem: also child of the above: how to instrument new code added by
nsformation process.

4,

II.

Areas of concern for DBSD are:

a. How to record the decisions that went into the
transformation rules themselves,

b. Once the transformation is complete, how will
the manual fixes be implemented,

c. When new source is introduced during the
transformation, what role does DBSD take.

Dr. Maly questioned the ability to start and stop
during the transformation process and if this is
possible how integrity would be maintained across
the views.

The above discussion was in relation to adding DBSD
to existing applicaticns and to providing hooks
petween DBSD and Refinery. Of another issue is if
DBSD is already existent in the application being
transformed. If this is the case, it was reported
by Dr. Wild that you would have gaps and loose
precision but not to a drastic measure.

Discussion moved to the task at hand for Paramax.
Ms. Taylor reported that there is a definite need
in the industry to reuse existing code. Customers
want to move to take advantage of new hardware
technologies without redoing software initially.
Their primary goal is to move to the new "box" then
revamp using CASE technologies to optimize once
there. There is no acceptance for down time on
existing applications. This is the driving force
pehind exploring the capabilities of Refinery.

Dr. Maly reported that DBSD is not related to the
functional view but to the decision view. This
needs clarification.

Future meetings will be held at 1:30 PM on

Thursdays with the exception of the next meeting
which will be on 31 March 1992 at 10:00 AM.

Meeting Agenda
2
31 March 1992
Opening Remarks

A. 0ld Dominion
B. Paramax

Current Status Review

A. DBSD
B. Refinery



VVVVYV

III.

Upcoming Events

Next Meeting (Proposed: Thursday, 9 April 1992,
1:30 PM, 0ld Dominion University)



From wild Mon Apr 20 18:00:18 1992
Status: RO
X-VM-v5-Data: ([nil nil nil nil nil nil nil nil nil]
[(nil nil nil nil nil nil nil nil nil nil nil nil "~From:" nil nil nilj)
Received: from plevin (snapper-bb.cs.odu.edu) by chrysanthemum.cs.odu.edu
(4.1/server2.4) id AA15290; Mon, 20 Apr 92 18:00:13 EDT
Received: by plevin (4.1/lanleaf2.4)
id AAQ00726; Mon, 20 Apr 92 18:03:36 EDT
Message-Id: <9204202203.AA00726@plevin>
References: <9204202016.AR20740Roswald.cs.odu.edu>
From: Chris Wild <wild>
To: Tamara Taylor <taylor>
Cc: wild, maly, bokil, rosca
Date: Mon, 20 Apr 92 18:03:36 EDT

Tamara Taylor writes:
>
Meeting Report: 2
Meeting Date: 9 April 1992

Meeting Location: 0Old Dominion University
Computer Science Department

Attendees:
Cld Dominion Paramax
Kurt Maly Tamara Taylor

Christian Wild
Sooshma Bokil

A. Opening Remarks:
Dr. Maly opened the meeting at 1:30 PM.

B. Current Status Review:

The topics on the provided agenda were discussed.

1. DBSD.
Tammy provided the minutes and Chris restructured
the problems into the DBSD format through D-
HyperCase. There were a total of six problems
named wl-w6. Discussion centered on these six
problem/decision definitions.

wl - Reengineering.

Kurt felt that the wl problem encompasses too many
issues and that Chris is "prettying up" because
once documented you are now accountable. Kurt
feels that the reengineering capability using
Refinery is a given as that is what the company is
paying for and should be stated as such. As for
the alternatives, Kurt was not aware that Refinery
is being evaluated during this process and the
possibility exists for Paramax to disband with use
of this tool if it is not a desirable and cost
effective approach to reengineering. Tammy stated
that although this is a remote possibility, the
possibility does exist after seeing how well the
transformation process performs and how easy the
methodology developed will be to implement. The
decision to use Refine is really dependent upon the

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
> answers to the following two questions:



v

v

VYV VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVYVVVVYVYVVVYVVYVYVY

Meeting Report 2
9 April 1992
Page 2

1. 1Is transformation methodology appropriately
mature for use by Paramax? and

2. 1If so, is Refine the way to go?

Tammy stated that Paramax feels relatively
comfortable that Refine is the best that is
available commercially for a transformation
capability. She also stated that she had spoken
with James Boyle of Argonne National Laboratories
who has been working in the transformation arena
for well over ten years. Mr. Boyle also feels that
Refine is the best transformation system available
commercially. He did however, send papers on the
TAMPR system which is a transformation system he
works on. Tammy has provided copies of these
papers to Chris and both he and she are currently
reviewing from a methodology standpoint. Kurt says
that when we are writing problems they need to be
stated as a problem and not as an assertion.

w2 - Preserve decision structure in AST.

Let’s assume that Refinery is the way to go and we
are proceeding along that path. W2 addresses
preserving the decision structure in the AST. This
requires annotating the AST. Mapping is known
because Refine is a transformation system. There
is therefore a tie between the lines being
processed in the source code and Refine. Refine
will have to be modified to mark the lines in order
to determine which transformed lines came from
which original lines. It was decided after much
discussion that this was the best decision
eventhough it will require modifying Refine. Kurt
questioned whether we should institute as policy a
requirement for discussion of the alternatives.
This would only be feasible if it was low cost and
easily accessible. One possibility suggested by
Chris was to use audio to record the conversations
and then you could access as necessary. It was
decided that audio is not feasible without digital
access and that is not readily available. It was
also decided that the alternatives should just be
expanded sufficiently to state their consideration.

Page 3



VVVVV\/VV\/VVVVVVVV\/\/VVVVV\/VVVVVVVVVVVVV\/VVVVVVVVVV\/VVVVVVVVVVVVVVVV

w3 - Precision of decision transformation.
This is an active problem and has no decision as of

yet.

w4 - New code added by transformation rule.
This needs further study.

w5 - Transformation rule decision views.

oblem/decisions outlined in wl-wé6.

Wl, w2, w5 and w6 are considered root problems and
w2 has as sub problems w3 and w4.

Of issue, is how to integrate DBSD into Refinery
and to realize that there is not just one decision
structure. The transformation rules have decisionow how the proc
affect our decisions. Tammy has the action item to
outline this prior to the next meeting. Sooshma
has the action item to update the wl-w6 decisions
and links to the decisions prior to the next
meeting. A point well made during this meeting is
that there are several process/decision views tnsformation rules,
3. Decisions concerning code that didn’t pass
the transformation, and
4. Decisions about the entire transformation
methodology itself.

Tammy also has the action item to graph these
decision views prior to the next meeting. ges of DBSD
on this task. They are

1. Once a transformation is performed, use
DBSD to update what didn’t pass the
transformation rules,
2. Use DBSD for new code added during the
transformation, and
3. Use Diews.,
Sooshma will update the decisions and links to wl-
wb .



Meeting Agenda

3
16 April 1992

Opening Remarks

A. 0ld Dominion
B. Paramax



Meeting Report :3

Meeting Date : 16 April , 1992
Meeting Location : Old Dominion University ,
Computer Science Department .

A. Opening Remarks :
Dr. Maly opened the meeting at 1.30 PM.

B. Current Status RBview :
1. Dr. Wild discussed the problems W7 - W11 that went into preparing the agenda.
Coding for W8 (removing from agenda list) and W11 (adding to agenda list) has been

done. Cutrently prescntation problem is being looked into .

2. Dr. Maly raised the point of interproject visibility i.e. when a system is being designed

using DHC as a tool , is the designer allowed to look at

a) a whole set of decisions
b) partial set of decisions

¢) no decisions
that were developed by someone else to develop the tool itself 77

3. The problem of ‘how much visibility’ of the above point depends on the “‘context’ of the

projects.

Our task is to translate a specific Cobol program into Ada .

Graphically , Translator

N

Cobol Process—-model Ada

~__

DHC



N

a) Is the user allowed to change Process-model ?

b) Is the dscr allowed to look into Translator ?

c) Is the user allowed to look into DHC ?

i.e. when we are solving problems by using solutions of other problems , how much do we need to
know about those solutions ?

In the next meeting we’ll be discussing about

a) Translation of decision structure thru’ refinery .

b) Functions of DHC .




Meeting Report: 4

Meeting Date: 23 April 1992
Meeting Location: 0ld Dominion University
Computer Science Department

Attendees:
0ld Dominion Paramax
Christian Wild Tamara Taylor

Sooshma Bokil
A. Opening Remarks:

Dr. Wild opened the meeting at 1:30 PM.
B. Current Status Review:

The topics on the provided agenda were discussed.

1. Chris stated that we needed to discuss what was
needed from Reasoning Systems to connect the DBSD
structure. It was decided that the grammar is

definitely needed. Tammy will provide the point of
contact for this and will additionally ask
Reasoning if it is possible for them to incorporate
the line number attribute into the AST.

2. Tammy provided a handout on the process
possibilities of Refinery and Refinery with DBSD.
We went over all ten pages and made changes to page
5. The area of change is #3 which is the decision
views attached to the target source including

a. decision views attached to original source

b. decision views attached to untransformed
code

c. decision views attached to new code
generated during the transformation

d. mapping of decision views attached to
transformation rules to code.

Please see handout for further detail. We deleted
3d as although it is still open for discussion, the
possibilities of implementing this are remote due
to the robustness of the requirement. We added a
fifth decision view which encompasses decisions
made on DHC in order to integrate with Refinery.
We also discussed 3b as this is a new problem for
DHC and the area of how to handle this needs to be



Action Items:

addressed. There are three possibilities for
handling 3b. They are

Meeting Report 4
23 April 1992
Page 2

1. Manually update,

2. Refinery gives some assistance, and

3. fully integrated.
Chris stated that of the three choices manually
updating is unacceptable. We are not sure what
assistance Refinery gives at this point. 1In light
of this, Tammy has the action item to find out what
Refinery does with untransformed code. She also
has the action item to write out the process for
the development methodology (#15 page 3)

Tammy will question Reasoning as to whether they
will be able to annotate object base with 1line
numbers.

Tammy will find out what Refinery does with
untransformed code.

Tammy will provide point of contact at
Kestrell/Reasoning for obtaining a university copy
of Refine.

5



rom taylor Mon May 11 16:18:06 1992

tatus: RO
-YM-v5-Data: ([nil nil nil nil nil nil nil nil nil]
("3767" "Mon" "11" "May" ngpw n16:18:01" "EDT" "Tamara Taylor" "taylor" nil
eceived: from ceawlin.cs.odu.edu by chrysanthemum.cs.odu.edu
(4.1/server2.4) id AA01648; Mon, 11 May 92 16:18:01 EDT
eceived: by ceawlin.cs.odu.edu (4.1/lanleaf2.4)
id AA28824; Mon, 11 May 92 16:18:01 EDT
lessage-Id: <9205112018.AA28824@ceawlin.cs.odu.edu>
‘rom: Tamara Taylcr <taylor>
fo: wild
jate: Mon, 11 May 92 16:18:01 EDT

Meeting Report: 5

Meeting Date: 7 May 1992
Meeting Location: 0ld Dominion University
Computer Science Department

Attendees:
0l1ld Dominion Paramax
Kurt Maly Tammy Taylor
Chris Wild

Sooshma Bokil
A. Opening Remarks:

Dr. Maly opened the meeting at 1:30 PM.

B. Current Status Review:
The topics on the provided agenda were discussed.

1. We collectively discussed the Refinery/DBSD process
possibilities focusing on page 5 of the handout
provided by Tammy at the last meeting. The outcome
of the discussion is that we are trying to solve a
reengineering problem of how to incorporate
Refinery and DBSd. This task initially encompasses

the following:

a. Reengineering problem - Need a system for
transforming existing applications and for
recording the decisions involved.
Solution: Develop REENG a reengineering tool
incorporating DBSD/Refinery.

-- Project directory /home/dhc/ReEngineering created

b. DHC Emacs problem - While performing a.,
exercise DHC locating problem areas.
Solution: Improve DHC by making appropriate
modifications.

-- Project directory /home/dhc/version2/DHC-emacs

c. Transformation problem - Automate porting
Cobol code including DHC from one machine to

another.
Solution: Write Refinery transformation rules

to translate cobol and DHC statements.
-- Project directory /home/dhc/versionZ/HZHTransformation



d. Instance of ¢ - Verify correctness of
rules written.
Solution: Instantiate c¢ by translating

Meeting Report S
7 May 1992
Page 2

specific programs from Harris to Microfocos
arena.

-- Project Directory /home/dhc/SnapPort

Action Items:

Action items resulting from this discussion are for
Tammy to write up problems in the minutes, Chris to
enter problems into DHC and to teach everyone else
how to use DHC, and for Sooshma to enter the
process model for soclutions.

2. Tammy is to ask an additional question of
Reasoning Systems concerning if there is a syntax
tree construct that the unparser doesn’t
understand.

3. The outcome of the meeting was that we appear
to have a better definition of the problem/problems
we are solving and a narrower set of tasks from
which to develop the transformation methodology.

Tammy will write up the four problems.

Chris will enter problems into DHC.

Chris will teach others how to use DHC.

Sooshma will enter process model for solutions.
Tammy will correspond with Reasoning on specific
questions.

Meeting Agenda



14 May 1992

I. Opening Remarks

A. 0l1ld Dominion
B. Paramax

II. Current Status Review

A. DBSD
B. Refinery

III. Upcoming Events

Next Meeting (Proposed: Thursday, 21 May 1992, 1:30
-- what happenend to this thursday?



Meeting Report: 6

Meeting Date: 14 May 1992
Meeting Location: 0ld Dominion University
Computer Science Department

attendees:
0ld Dominion Paramax
Kurt Maly Tammy Taylor
Chris wWild

Daniella ?7?
A. Opening Remarks:
Dr. Maly opened the meeting at 1:30 PM.

B. Current Status Review:
The topics on the provided agenda were discussed.

1. we discussed necessary revisions to a paper that
will appear in a software magazine this fall. The
paper describes how DHC is used in the DBSD arena.
Kurt would like to see more comments in the paper
about what the benefits of using DHC are. It was
decided to replace the term "documentation" with
"project memory"” throughout the paper. It was also
decided that the paper needs more hard facts. By
this we mean to state that we are using DHC and how
it is providing us with a miltiview of our problems
and decisions. Additionaliy, one example needs to
be given and expanded throughout the paper. Kurt
would also like to add tables and diagrams as they
will more than likely entice interest and prompt
reading of the verbiage. One high point for credit
worthiness is to state claims of which we are
claiming that using DHC will save you some number
of man vyears in performing maintenance on a
project. We want to stress in this paper that DHC
provides a connected system from the specifications
through the coding effort and the ability to
retrace your decisions and their benefits and/or
side effects. Daniella and Tammy will participate
in updating this paper. Tammy will provide the
commercial side as to the numbers of man years that
are spent on maintenance etc. and Daniella will
pecome the resident expert on the wunderlying
program structure of DHC.

H



|

Action Items:

Discussion moved to the task Tammy is undertaking
to 1initially use Refine to port Cobol from one
machine to the other. Kurt sees no need for
transformation rules for this task. He believes
that the syntax tree will not change and that there
is therefore no need for a rule. He also doubts
that there is an unparser. Tammy of course
disputes this and says that we do have an unparser
and that there is a need to do a transformation
rule at this stage eventhough this appears to be a
simple problem. - Tammy 1is tasked to question
Reasoning about this.

The action items from last week will continue to be
worked on as the problem layout is complete but
instruction still needs to be given on DHC and the
solution process still needs to be modeled.

Chris will enter problems into DHC.

Chris will teach others how to use DHC.

Sooshma will enter process model for solutions.
Tammy will correspond with Reasoning on specific
questions.

Next meeting: (Proposed Thursday 21 May 1992, 1:30
PM 0Old Dominion University)




From taylor Fri Jun 26 11:21:29 1992

Status: RO
Xx-yM-v5-Data: ([nil nil nil nil nil nil nil nil nil]

(nil nil nil nil nil nil nil nil nil nil nil nil "~"From:" nil nil nil])

Received: from horsa.cs.odu.edu by chrysanthemum.cs.odu.edu

(4.1/server2.4) id AA14825; Fri, 26 Jun 92 11:21:28 EDT

Received: by horsa.cs.odu.edu (4.1/lanleaf2.4)

id AA05775; Fri, 26 Jun 92 11:20:54 EDT

Message-Id: <9206261520.AA05775@horsa.cs.odu.edu>

From:

Tamara Taylor <taylor>

To: bokil, maly, rosca, taylorx, wild

Date:

Fri, 26 Jun 92 11:20:54 EDT

Meeting Report: 8
Meeting Date: 24 June 1992

Meeting Location: 0ld Dominion University
Computer Science Department

Attendees:

0ld Dominion Paramax
Kurt Maly Tammy Taylor
Chris Wild

A. Opening Remarks:

Dr. Maly opened the meeting at 1:30 PM.
B. Current Status Review:

Please note that there have been no minutes provided for
6/10/92 and 6/17/92 meetings.

1. Tammy reported on her trip to Reasoning Systems for
advanced training. She said she feels more
comfortable with the tool but that it is a large
tool with varied capabilities and there is still a

. lot to learn. She did perform some transformations
while she was in class on code specific to her
task. She additionally held the line numbers from
a D_HC file and feels she will be able to transform
the needed information from the D-HC files. She
will be completing the transformation rules for her
specific task immediately as well as looking at D-
HC for where it will be useful in this project.

Discussion proceeded to our goals for the summer
which include all parties (Daniella, Soosma and
Tammy) being familiar with both D-HC and Refine.
Tammy 1is the process model and Refine person and
Daniella is the D-HC person. It is not yet
determined where Soosma will concentrate her
efforts. Daniella will get the next iteration of
D-HC up and running in this time frame as well. At
the end of the summer, we will have a more concrete
process model and will know how both D-EC and
Refine can be utilized on a project. We will
evaluate them separately and as a package.

The agenda for the next meeting will concentrate on



IT.

III.

reviewing the process models for the machine port
and for embedding SQL statements into ported code.

The action items to be completed prior to the next
meeting are:

1. Kurt, Chris and Tammy will review existing
process models and update/detail accordingly.

2. Tammy will obtain email address for Chris for
persons to contact that are using Refine in classes
being taught at Oregon State, Naval Post Grad
School and Air Force Institute of Technology

(AFIT) .

3. Tammy will obtain status on slip protocol
connection as it needs to Dbe completed prior to
running windows across the modem.

4. Chris should provide an update on the paper
which is to be published in the fall.

Meeting Agenda
11
1 July 1992
Opening Remarks

A. 0ld Dominion
B. Paramax

Current Status Review (Action Items)

A. DBSD
B. Refinery

Upcoming Events



Next Meeting (Proposed: Wednesday, 8 July 1992,
1:30 PM, 0ld Dominion University)



From taylor Thu Jul 2 11:44:01 1992
Status: RO
X-VM-v5-Data: ({nil nil nil nil nil nil nil nil nil}
[nil nil nil nil nil nil nil nil nil nil nil nil "“From:" nil nil nil])
Received: from penda.cs.odu.edu by chrysanthemum.cs.odu.edu
(4.1/server2.4) id AAQ08112; Thu, 2 Jul 92 11:43:59 EDT
Received: by penda.cs.odu.edu (4.1/lanleaf2.4)
id AA09462; Thu, 2 Jul 92 11:44:16 EDT
Message-Id: <9207021544 .AA0%462@penda.cs.odu.edu>
From: Tamara Taylor <taylor>
To: maly, rosca, taylor, wild, zhang_ j
Date: Thu, 2 Jul 92 11:44:16 EDT

Meeting Report: 13

Meeting Date: 1 July 1992
Meeting Location: 0ld Dominion University
Computer Science Department.

Attendees:
0ld Dominion Paramax
Kurt Maly Tammy Taylor
Chris Wild

Daniella Rosca
Jing Yuan Zhang

A. Opening Remarks:
Dr. Maly opened the meeting at 1:30 PM.

Please note for history purposes that these minutes
represent our thirteenth meeting and that is reflected on
the meeting report number. Minutes were provided and
numbered correctly for meetings one through six. No
minutes were provided for meetings seven through eleven.
Minutes were provided for meeting twelve but were
numbered incorrectly as meeting report eight. In the
future minutes will be numbered according to the
chronological number of our meeting just as this one is
numbered thirteen.

B. Current Status Review:

Kurt provided a handout with an updated version of the
reengineering problem and it’s sub problems entered in D-
HC and a process model of the reengineering problem using
the context free grammar. Discussion revolved around the
problems/model and the handout was updated accordingly.
It was decided that the reengineering problem would only
cover porting, enhancing and translating. It was also
decided that the first pass of any of the three areas
would be different than additional passes. It was
additionally decided that part of the first pass is a
"getting familiar with" stage. Update to format for
context free grammar are that we will use activities with
an agent subscript and objects will be denoted with a
tocol and a period (e.g. d.convention for something D-HC
knows about, can modify or produce.) Daniella will
update the D-HC problems and Tammy will update the
process model.



The agenda for the next meeting will concentrate on
reviewing the updated D-HC problems and the updated
process model.

The action items to be completed prior to the next
meeting are:

1. Daniella to update problem definition in C-HC.
2. Tammy to update process model.

3. Chris should provide an update on the paper
which is toc be published in the fall.

4. Tammy to provide updated status on email
addresses for instructors of Refine.

Meeting Agenda

14
8 July 1992
I. Opening Remarks
A. 0l1ld Dominion
B. Paramax
IT. Current Status Review (Action Items)

A. DBSD
B. Refinery

ITIT. Upcoming Events

Next Meeting (Proposed: Wednesday, 15 July 1992,
1:30 PM, 0ld Dominion University)



Meeting Report: 14

Meeting Date: 8 July 1992
Meeting Location: 01d Dominion University
Computer Science Department

Attendees:
0ld Dominion Paramax
Kurt Maly Tammy Taylor
Chris wWild

Daniella Rosca
Jing Yuan Zhang

A. Opening Remarks:
Dr. Maly opened the meeting at 1:30 PM.
B. Current Status Review:

It was decided that we need a process model for D-HC that
is more reflective of what is existing and what is to
. exist in the next iteration. The current D-HC process

model is an ideal model that is to be worked toward but
is not reflective of the current state. Discussion
centered on this topic with several action items being
assigned. Additionally, we defined a process model as
being "rules of interaction among the agents of change be
they tools, humans, etc." We will also need D-HC to
incorporate a view of the process model in the decision
view so that you can assess where the process model needs
to change when a change occurs in a tool/function modeled
by the process model. This view also needs to be
filtered according to individual needs.

The following action items resulted from this meeting:

1. Chris will provide a list of what will be added to
D_HC from the existing process model and a previous
functional grouping.

2. Chris will propose what functionality will be
provided for next iteration and will work with
Daniella and Jing Yuan on updating the process

model.
3. Chris will rearrange the existing directory
. structure to accommodate Kurt’s proposed
reengineering problems/process model. He will

I ——




additionally input the problems and process model
into D-HC as a demo to those of us who will be

working with it.

4. paniella and Jing Yuan will enter onto the agenda
the task of printing out documentation and of
filtering views. They will additionally work on

the code for these two 1items though not prior to
the next meeting.

5. Tammy will update the process model according to
the standard conventions and will rework again
according to specific objects.

6. Everyone will keep a notebock of what they are
doing in terms of activities and record the when,
where, what and how long that 1is involved.

7. Further discussion needed on reuse of D-HC from one
task to another. Will this be implemented or not?

8. Everyone will use D-HC and become familiar so as to
make recommendations for update. Use the
~/dhc/demo directory and nreset" prior to use to

get familiar with.

Note: Next meeting is Thursday, July 16, 1992, 2:30 p.m.




rrr 0000 5885 (4449 ddad

r [+] [+] 3 $ c [ e
] ] 5% < adddad
] [+] $5 4 4 L]
o [+] S S [4 < a a4
0000 $58§ ccce dddd d

nu Job: stdin Date: fue Oct 20 19:32:1% 199¢

it 20 19:32 1992 standard input Page !

‘rom taylor Tue Jul 21 10:10:29 1992
la: maly, rosca, taylor, wild, zhang_j

Meeting Report: 15

Meeting Date: 16 July 1992
Meeting Location: 0Q1d Dominion University
Computer Scrence Department

Attendees:
0ld Oominion Parasaxr
Kurt Maly [ommy laylor
Chris Wild

Qaniella Rosca
Jing Yuan lhang

A. Opuning Remarks:
Or. Maly opened the meeting at 1:00 PA.
B. Current Status Review:

Chris had listed the existing functionality of D-MC along
with a proposal of what should be provided 1n the next
iteration. The proposal was discussed and will be
elaborated on at the neat aeeting.

It wa decided that reuse of tasks 1n D-tC will nat. be
implemented in the next iteration. It was alsu decided
that the problea and decision space 1n D-HC should be
separate. Additionally, we need o fore fur regording
what we are working on 1n order 1o guather statistical
inforeation while working outside of 0-HC.

We will review the updated process sude!l 4t the nest
seetlng,

The following action items resulled from this meeling:

1. Chris will provide a hard copy andfor file name of
the updated process aodel which cuntains cs1sL1ng
functionality.

2. Chris will provide a hard copy and/or file name of
proposed functionality for next iteration of D-HC.

3. Daniella will sove all dependenty and Justification
links related 1o the problem to within the probles
space. These will be separate tros Lhe decision.

q. Tamay will provide a form to bLe reviewed at the
neat meeting which will a1d 1n recordiny what they

are working on in relation to B-HC/Retinery.,  Thas
is to be used to statistical purpuses.

IThe following action items remain from the B8 July 92




meeting:

3. Chris will rearrange the existing dJdirectury
structure to accossodate Kurt's proposed
reengineering probless/process model. He will
additionally input the probless and proce:s aode!
into 0-HC as a demo to those of us who will be
working with it,

4. Daniella and Jing Yuan will enter onto the dgenda
the task of printing out docusentation and of
filtering views. They will additionally work on
the code tor these two ilems though not prior to
the next meeling.

5. Tammay will update the process sudel according to

t 20 19:32 1992 standard input Page 2
the standard conventions and will rework ugain
according to specific objects.
a. Everyone will use D-HC and become ramiliar so as to
sake recosaendations for update. Use the
~-/dhc/deso directory and “"reset® prior tou use to

get familiar with,

Mote: Next meeting is Wednesday, July 22, 1992, 1:3u p.&.

Meeting Agenda

16
22 July 1992
. 1. Opening Remarks
A. 01d Dominion
B. Paramax
1. Current Status Review (Action lles:) \s
i A. 0BSD ?;\GQ'

8. Refinery

[1l. Upcoming Events 0?‘\ O

h Next Meeting (Proposed: Wednesday, 29 July 1992, &
1:30 PM, Old Dominion University)




Meetiné Report: 16

Meeting Date: 22 July 1992
Meeting Location: 0Old Dominion University
Computer Science Department

Attendees:
0ld Dominion Paramax
Kurt Maly Tammy Taylor
Chris Wild

Daniella Rosca
Jing Yuan Zhang

A, Opening Remarks:
Dr. Maly opened the meeting at 1:30 PM.
B. Current Status Review:

The first topic discussed was how do we logg objects

that we manipulate and the activities we accomplish,
especially when we are outside DHC. Here we have to

make a decision about the fact that the tool should 1
support everything (including outside DHC).

The form we need should state the activities, the time

spent on each of them, the order of activities. We have

to choose between:

1. a form of the process model and checkout the steps
that I am doing.

2. a list of the terminal activities from the process -
model. In this case I loose the sequence of activities
and the objects on which I do the activities.

Another topic of the meeting was the visibility of the
decisions, i.e. if we make a decision on a transformation 2
rule do we make it visible on the target code?

Also we have discussed the subject of identifying a problem
at one level and solving it at another level ( the system’s
or the user’s levels). We haven’ made a decision yet on
this subject.

On this subject Chris has come with an example: the variables

in a cicle in FORTRAN. What to do? I can write a transformation
rule for that and tell the user about it, or do it automatically
(without telling anything to the users) and realize that this
thing may be inefficient for a user that doesn’t need this
facility too much.

[

It should exist the possibility of filtering the views or part

of a view I'm interested to see.

The following action items resulted from this meeting:

1. Daniela and Jing Yuang will continue to work on the agenda
functions in order to extend the actual facilities of the

system.

2. Tammy will update the form she presented as we have discussed.



ating Report: 19.

eting Date: 9/23/92
.eting Location: OoDU

tendees:

OoDU: Paramax:
Kurt Maly
Daniella Rosca
Chris Cowles
Chenglin Zhang

he meeting began at 2:15. Chenglin (Lin) was introduced. Names and passwords
.ere exchanged. NB: <cowles> <rosca> <maly> <zhang_c> <taylor>

ermissions are needed for Cowles and Zhang for the /dhc directory. Chris will
;ee Ajay to see that it is done. zhang will also pe added to the "faculty™ Email
list.

on the minutes of the previous meeting. He suggested

) "charts with problems and decisions for whatever
Over the

Jr. Maly began 2 discussion

that the phrase (found under B:
we will develop" be changed to read "whatever we will and have develope v,

course of this discussion, the following points were made :

_pDefinitions of DBSD and re-engineering (Refinery) were restated. Refinery
is used in a graphical environment and is used to write rules. DBSD is ODU’s proto
it’s another tool to be used with Refinery. We wish to use both of these in a unif

environment.

-A problem: in porting source-code to another machine (say, A to B), two pe

the user and the porting engineer) may have different n"decision views" in sou
How do we support different decision st

(say.,
ructures on the same source code? For examp.
single LOC may have 2 decisions attatched to it; it depen

ds on who is viewing it (t]
user or the engineer) as to which decision(s) are shown with this LOC.

-In the above example, we do not wish to have both operations active at the
same time; i.e.. only when the code is completely ported to machine B is it then tw
over to the user. (Also: might the engineer sometimes need to look at the code and

decision structure from the user’s point of view?)
The following points & observations were also made:

-All project problems are to be entered into the problem space and agenda A
COME UP.

-We need to evaluate DHC; make it more stable and useful enough. Possibly
some functionality.

-Make problem descriptions more in depth from now on.
-Add to the chart what Daniella has done.
-Make and keep notes regarding conditional decisions; add to the DHC code s¢

that we are able to backtrack decisions.

The meeting was quickly ended at 3:15 pm, as we all rushed off to the colloquium.



From rosca Wed Oct 14 10:41:16 1992

To: maly

Subject: meeting notes2l
Cc: rosca, cowles, taylor, zhang_c

Meeting Report: 21

Meeting Date: 7 October 1992
Meeting Location: 0ld Dominion University

Computer Science Department

Attendees:

0ld Dominion Paramax

Kurt Maly
Chris wWild
Daniella Rosca
Chris Cowles
Chenglin Zhang

Opening Remarks:
Dr. Maly opened the meeting at 1:30 PM.
Current Status Review:

First we have discussed the deliverables for this phase of the
project. They will be: the paper from ‘91, the paper from "92 (IF1IP),
the viewgraphs for boths and the meeting notes.

In this meeting we have discussed the objectives of our project
for the following months to come. Basically, we have addressed the
topic of the integration of DHC and Refinery. We have two
possibilities: make them loosely coupled, seeing each other like a
black box that executes its job sequential in time with respect to
the other tool or make them tightly coupled.

To answer this question we have to answer first the question: are
the transformation rules built using DHC or Refinery? If we use
DHC for writing the transformation rules we will use Refinery
afterwards as a compiler for the transformation rules,

For a tightly coupled version we will need to embed DHC in Refinery,
to consider each of the Refinery functions as black boxes and wrap
them in DHC functions, if they are sufficiently small. Also we would
need that this functions be noninteractive so that we can have the
control of the user actions at the DHC level. For this we would need
a deep understanding of the source of Refinery, to figure out how

to make the link with DHC. We would need from Paramax a detailed
list of capabilities and functions of Refinery,

Dr. Wild said that from the discussions with Tammy resulted that
from the past and current experience it seems to be no need for
a tightly coupled version. Anyway we need to ask them again and to
thoroughly analize which are the gains from writing the
transformation rules in DHC and which are the gains from writing
them in Refinery. '

Another question that we have to ask Paramax is if they want to
support also the reverse porting, in the case when is needed an
enhancement in the ported program. Do they want to maintain the

2 versions of the program consistent, so we should have the
capability of going back and forth between the 2 versions of a
program, or once we have done the porting, the older version will
not be considered anymore. ‘




From the discussion resulted the following guide lines for the
future development of DHC:
- add the filters for different views:
- for porting engineers
~ for enhancing engineers
- for project managers
- develop new evaluation methods, new measures

statistics.
- to enhance the existing process model.

t
!

5 to have automatic

Meeting Agenda

) 21

7 October 1992

I. Opening Remarks
A. 0ld Dominion
B. Paramax

- II. Current Status Review (Action Items)

A. DBSD
B. Refinery

ITI. Upcoming Events

~ Next Meeting (Proposed: Wednesday, 14 October 1992,
1:00 PM, 0ld Dominion University)




sowles Wed Oct 14 14:49:36 1992

osca
ct: last meeting

.nclosing the minutes i‘ve written so far. Do you think there is more
i should add? Some things i admit, i Jjust didn’t get. I don’t expect
.o write the minutes for me: put let me know if you have any comments.
Lso, what waas it the maly was calling the Navy division that Paramax

3 with? was it NAVMEX or something?

Meeting Report: 22

Meeting Date: 14 October 1992

Meeting Location: 0ld Dominion University

Computer Science Department

Attendees:
ParamaXx

0ld Dominion

Daniella Rosca
chris Cowles
Chenglin Zzhang

Maly opened the meeting at 1:10 PM.

reading the el files, 2) continuing with

'sp, and 3} learning to Irun the DHC demo. Dr Maly would like us, within
jo weeks, to 1) be more familiar with DHC, 2) have a reasonable idea of the
yde structure, and 3) be close to being able to make modifications in DHC.

ris and Lin are currently 1)

She needs tO 1) gather

aniella is to put together the report to Paramax.
have a particular

he material, 2) start to write a cover letter, and 3)

action-list". We will request of Tammy Taylor & 1ist of terminals and non-
erminals in Refinery. November first is the target date to submit this
-eport.

g will be on Tuesday (Oct. 20th) at 11 am. due to a conflict.

yur next meetin
the 1 pm time is firm, at least for

sor our other regular Wednesday meetings,
-he time being.

paramax’s task (ie., Tammy’s) is to use Refinery to port code. Our tasks is
to show that we can take their output in whatever form, and complete the
process of transforming it into a complete second form of the code (eg..
COBOL) . We want to show that DHC is a useful tool for porting - to complete

the transportation of that (COBOL) program.

in

we would like to hear from users {(Paramax,

As regards our marketing efforts,
re involved.

Navy) about such things as knowing how many languages and ships 2

In writing down all Problems in the overall Problem Space: do we face the
problem of knowing whether or not this Problem has already been defined in
the Problem space? Is a problem part of a larger Problem Structure? Where
does it fit into the Problem space? It seems that oneé has to know the entire
Problem Space in order to know where this problem fits in. We note that
every problem peing solved is tied to a requirement.

e well-defined tasks to do, the

Since we all seem at this point to hav
meeting was ended at 2:10 pm.




From rosc
Received:
(
Received:
1

a Tue Oct 27 22:20:15 1992

from ramses.cs.odu.edu by chrysanthemum.cs.odu.edu
4.1/server2.4) id AA26895; Tue, 27 Oct 92 22:20:13 EST
by ramses.cs.odu.edu (4.1/lanleaf2.4)

d AA00416; Tue, 27 Qct 92 22:28:10 EST

Message-Id: <9210280328.AA00416@ramses.cs.odu.edu>
Date: Tue, 27 Oct 92 22:28:10 EST
From: Daniela Rosca <rosca>

To: maly
Subiject:

meet23.notes

Cc: rosca, cowles, zhang ¢
Status: R

Meeting Report: 23

Meeting Date: Oct. 21 1892
Meeting Location: 0ld Dominion University

Computer Science Department

Attendees:

w N

0ld Dominion Paramax

Kurt Maly
Daniella Rosca
Chris Cowles
Chenglin Zhang

Opening Remarks:

Dr. Maly opened the meeting at 1:00 PM.

Current Status Review:
We looked over the report and cover letter prepared by Daniela for
Paramax. We need to add a table of contents and a complete chart of
the Reengineering problem with the corespondence between problems

and descriptions.

In the report we have to put explicitly references to the
attachements of the document and to have separate chapter for each

main topic.

We have also discussed the specific questions to ask Paramax about.
They concern mainly market information needed in taking our decisions.

The following action items resulted from this meeting:

put togheter the chart of the Reengineering problem.

upgrade the report according to the chart.

ask Tammy all the information necessary for completing items 1 and
2.



Meeting Agenda
23
Oct.21 1992
I. Opening Remarks

A. 0l1ld Dominion
B. Paramax

IT. Current Status Review (Action Items)

A. DBSD
B. Refinery

IIT. Upcoming Events

Next Meeting (Proposed: Wednesday, Oct. 28 1992,
1:00 PM, Old Dominion University)



m zhang _c Wed Nov 11 12:44:31 1992
taylor, cowles, rosca, maly
>ject: meeting note 24, final

Meeting Report: 24

Meeting Date: 28 October 1992
Meeting Location: 0Old Dominion University
Computer Science Department

Attendees:

0ld Dominion
Kurt Maly
Daniella Rosca
Chris Cowles
Chenglin Zhang

r. Maly opened the meeting at 2:15 PM.

Chris and Lin prepared a chart of the reengineering problem space

aniella,
The following discussion was

hich we had defined so far for the meeting.
ased on the chart.

such as market future and the process

r. Maly pointed out that some problems,
d reemphasized the importance that

f reenigneering to Paramax, were missing an
svery problem, whether it is currently linked or not, should go

‘he evaluation of dhc, Refinary, and process model is not the problem of re-

:ngineering. As far as reengineering is concerned, we have to study its
nethodology, process model, and supporting tools. We have to make a decison
sn such alternatives as 1) use dhc alone; 2) use Refinary alone; 3) use them

soth. If we choose the last alternative,

we have to l)upgrade dhc; 2)get more knowledge

In a loosely-coupled approach,
face between dhc and Refinary. Here we

>n Refinary:; and 3)determine the inter
~--Moron Refinary:
need more information from Tammy:

1) reengineering process in Paramax;
2) pros and cons of Refinary.

We spent some time on how to reuse solutions if the coming problem is the same
as or similar to a problem in the problem space. Cut-and-paste seems to be a
good strategy. Anyway, we have to make out how to build the reuse machanism

into the dhc or Refinary process model.

We reached the following convensions for our future charts:
1) The text in every node of the chart should contain the name of the corrres-

reference between the chart and .pd/.dd files.

2) The up and down links in decisions (UL and DL) will be dropped out because
all the information will be organize
in fact no links between decision nodes.

3) We do not have to require that every problem
decision node. In fact, we make a decision on

alternatives.
4) We may add some mark symbols to problem nodes to indicate their solution

status.

node has a corresponding
ly when there are several

Some problems remain:

1) How to generate unique i
practice in dhc is to use
This should be changed.

2) How to show output of problem solving in the chart.

dentities for problems and decisions. The current
the first character of login name with a number.

into the chart.

and 3)determine the interface between dhc and Refinary. Here we

d around the problem space and there are

we have to decide if they are looselycoupl:

pol



3) How to sort the problem and decision spaces according to some specific
criteria.

Because there are some things unclear to us about market and Paramax, we will conce)
chart. We will have an upgrated chart for the next meeting.

The meeting was ended at 3:50 pm.



Meeting Report: 25

Meeting Date: November 13, 1992
Meeting Location: 0ld Dominion University
Computer Science Department

Attendees:
0ld Dominion Paramax
Kurt Maly Tammy Taylor

Daniella Rosca
Chris Cowles
Chenglin Zhang

Dr. Maly opened the meeting at 9:30 am.

The focus of this meeting was to review and update the Chart and Report to
be sent to Paramax.

For the Report, a Table of Contents is needed; previous meeting notes and

the Chart are to be included. In the Chart, our problem is the DBSD paradigm
and what we are doing for the Paramax Reengineering problem. Paramax problems
include: what’s a reasonable tool for porting/enhancing/transformation, and the
need of a Market Study to decide how much to emphasize each. We have chosen,
as of now - due to the unavailability of a Market Study, DHC and Refinery,
loosely coupled.

As for the Chart’s alternatives, we will add only the major ones. We also
need to shade in (in xfig) all the outputs. We will "freeze in" today’s changes
in the Chart as part of the overall Report.

Some items not yet addressed in the Chart include: 1) using it as a quick
reference to problem decisions, and 2) adding problem names in the existing boxes
to be used as an index. All of the attachments for the Report are ready.

Our questions for Tammy / Paramax include: Are there any Reengineering contracts
as of now? How big are they? How many LOC are involved? What ‘are the problems
in the other solutions and what are their characteristics?

As far as the actual submission to Paramax is concerned, an invoice is to be sent
under separate cover and should reference the deliverable.

Tammy will be here on Tuesday to help Daniella with the Chart; we will meet
again on Wednesday at 1:30 to make final adjustments; the package will be sent
on Thursday, November 19th, 1992.

The meeting was ended at 10:30 am.



-eliminary Draft: 11/18/92

ATTACHMENT #4

Primary draft of the chart representing the

problems involved by the reengineering process



Chart of the Problem Space for Reengineering

(23]
Y
) How many contracts of thesc ¢ypes
acwally exi )
NOV 18, 1992 l_y:unuhrmnmd\vw
ase their characieristics?
M
Market Study on -
Reengineering:
Porting, Enhancing, What other solutions have beea used
o Transision 1l now and which are their
- cties)

Suppon only simple
porting

Poriing applicadons
from onc machine

Reenginecring
Probiem

source language to
anuthet

What kind of CASE
wolstouse?  [deal

Occision-Dascd Sofiware
Develapmeni Methodology

Reusc Problem
Solutions &
Decisions

Long-term

poalx

LM '
1 Others )
Passible Al methads
Applicd 10 DRSD o
n
e Demoasiraie DHC
Apply Process Model .
0 Transformation Task
Demonsirase Refinery

Lepend
Problem
Decision

—
)
Pocemon

Dependency Link
Alternative Link

logg form representat
of abjects & activities

Log the scuivives
of all participanis

Justification Link .
Ouiput Link —_—

Evaluate Process Model,
UE. DHC, Refinery

Anslyze the data
of the lopger

Analyze_lop on Refine



s

-

P

How many contracts of these types
actually exist & Paramax and which

are their characteristics?
\

W e 2R
Requi ey

E

20
—

What aher soluuons have beea used
1ill now and which are their

characieristics?
.

New code addedd by (-
formalion rules 10 1a4get

— | Paramax

\ Notations for
Process Model

(21)

Get Refinery
Process Mode!

Manual prccssing alter
Refiery yanlosmations

Get DHC Process Modcl
for Reengineering

i

Tniceface
buiween
DIIC &
i
’ " ———— -
Develop Unified
Envisonment (UE) 1
Und "
'
H Refinary
v
20
2] 110
Demonsuae DHC
Upgrade DHC

Demonsiraie Refinery

o1

Log Process Model

logg form represcnuation
of objects & acuivives

Log the acuviues
of all panicipants

Analyie the daia
of the logger

Analyze_log on Refincry

Precision of
decizion trans-

Prescrve decision

sructure through

formmion

Refinery

Ll e

How 10 suppon different decision views How 10 suppon “filening”
on the same source code of views

e

How 10 suppon pioblem-salving
o differem levels

ins

Location of a problem in the problem space

21

How 10 vack conditional decisions J

B

Enhance cvaluaion methods J

Tool for upgrading DHQ

Modify agenda lis

Upgrade DHCquit
mechanism

Unique names of

Enury definition

331 preey
Field definition ' Empty ficld deﬁnﬁia\J

Problems &
Decisions




7661 ‘ST AON

3uLI129UI3UddY J0j 2drdg WAqO.IJ Y] JO JdBYy )

Page 1 (1, 1)



ﬁ 19158 Suissao0id _a:E:\,C

gm

( $3|1 UOIBULIOJSUEN J

10] SMOIA UOISIIX(]

N\ k

T

[ p3mio) S| UONBLLLIO) )

-sue) AQ pappe 2p0d MIN

ﬁ y

b

J0J SUONBION
N mmxk

xdEEab

10 13pOW
$S300. enlo

L 1d | <k

Le3

{SONSLIAIEIRYD
JI9Y) 3TE YOIym pue mou |1

Pasn u23q ALY SUONN[OS 19410 TBYM

9z

{SOnsuAdRIRYD 119Y) 21T

YoIyMm pue Xeurered e ISIxa Ajjenioe

sad£) 252y JO $108NU0I AuBW MOYH

€3

I9PON $§22014

o~
~

N
Q]
—
A
™
0]
Y]
3
[a W)
a
uonE[SUEl] JO
‘3udueyuy ‘Sunuod
:JuuoounBuaay
uo Apnig 193Ie N
J
(24



Page 3 (1, 3) blank page



Sutuod os1aA01 pue i~
|
8unuod yioq woddng !

e T e e e - - - e

3uinod
s1dwis £uo poddng

221

asdgdq o1 payddy
Spoyisw 1y 9)q1ss04

SUOISIoa(]
% suonnjog

s[eod
uu-guor

w2)qoid asnay

Lia

ﬁ —

nyoue )
01 93enSue| 2o1n0s

A3ojopoyapy wawdojaaq
SIEM1JOS paseg-uoisiaa(]

su

3uo woyy 222::&

122

waqouy
3unsouiduaay

uonesidde
a1 jo sanyea;
a1 duUeyuy g
022

—

ﬁ Jayoue o)
SUTYdRLW U0 WOy

suonesrdde Sumno
_ Suoney) o4 g

611

13

Page 4 (2, 1)



ssa701d sensuowrad

\}
N
o
N’
Ve
O
&0
<
A

pardno) A|2s007]

{Isn 01 S|00}

SV JO PUPi 1BUM

[:k4

(3}
[ =1
]
G}
Q
=z
@]
—‘\\f
\

- ——

S|PpON $$2201(d A1puyay
2 DHQ 2UKWD

Suueoumduady 10

|2POIN 592014 9] (ERES)

13PON $52901d
£3ou2y 1°O

cannvit €CONOJA | -



SMIA JO )

g

SUOISIOOP EUONIPUOD YIB1l Ol MO ul\

A%

soeds wojqoid sy ui wajqoid e Jo uoneso]

A

3urajos-wajqoid uoddns 01 moy

S[2A] JUSISJJIP 1e

Sie

~N

Suuay, voddns 01 moH
J

b1z

\_

SMIIA UOISI29p Jua1)j1p uoddns 01 moy

9p02 22IN0S 2Wes Iyl uo

uoneuuoj

-SUEI] UOISIO9p

Jo uoIs1d21d

£m

g1z

bo::umy
y3noiy amionns

Areurjoy

pueIsIapuf)

(3) uswuonAug

paytun dojaadq

% OHA
uIMIAq

UOISIIIP IAIISIL

rdal

J0ejI31U]

4%

62

Page 6 (2, 3)



Page 7 (3, 1)

yurpinding
3ury uonesynsny
AU JANRWIIINY

Yur] Asuspuadaqy
liEliiishletg|
uoIS193(]

2)qoiy

puada -




e AP S e S e 08 Gy s e it s et e = =1 eol

Kouryay woqu

X3

JHA wo.Q

R 24

qn 801

1 X3

12POJN $sa201d 307

22

h K1auyyay uo 8o azKeuy

sga

h JHAQ uo 301 2zAeuy

vE

h 40 uo wo_lo;_g,@
€€

J9PON 20014
uo 30| azApeuy

(A

13830] 241 Jo
eiep ay azAeuy

Auyay ‘DHA ‘AN
‘[9POJN $52001 3lenjeaq]

sanAnoe 2 $159(qo jo JA
uolieiuasaidas uuoy 880) g

12

[ 4

ﬁﬁs&_o::a e jo
sanianoe o1 Sog

pi

4

an mem:oEoﬂw

6€1

—

.

A1aunyay slensuowsq

8¢

DHA 2irnsuowaq

£a

3Se ] uoneuuojsuel] o1
19pOJ Ss2001d Kjddy

g1

Page 8 (3, 2)

I



SUOISINA(
¥ swaqold
Jo saureu anbiun)

1 3%4

w Qo:_éou P2y Adwg _ h uonmyap piatg
[T [TTREN
vid tTid
1nb-JHQ speiddn
TFa
uoniulyap Anug
(4% s

151] epusde AJIpojy

.

[

181] epuade uasuy]
U3

@Q durpeaddn ao0j j00 ],

3

h SPOY1aW UONEN[eAD 30URYUL]

Biz

OHAQ spe1ddn

Page 9 (3, 3)



eliminary Draft: 11/18/92

ATTACHMENT #5

DHC problem and

decision spaces



PROBLEM < PACE re. PC[

&&rl reengineering problem
P: Develop a methodology and supporting tools to port applications from a source :
UL: apply_and_improve DBSD methodology
DL: porting_problem 4
DL: translating problem
DL: enhancing problem

&&r?2 reengineering_process_model
P: Develop a process model for porting,translating and enhancing applications
UL: simple porting
DL: process_model implementation
DL: process_model notations
DL: get_Refinery process_model
DL: get DHC_process_model_ for_ Rengineering
DL: combine_ DHC&Rfinery process_models

&&r3 evaluation_problem
P: validate the decision in reengineering problem
UL: simple porting
DL: logger
DL: statistical_analizer

&&r4 logger
P: Log the activities (as defined in process model) of all participants.
UL: evaluation_problem
DL: logging form representation

&&r5 statistical_analizer
P: Analize the data of the logger
UL: evaluation problem
DL: analyze_log_on Process_Model
DL: analyze_log_on Unified Environment
DL: analyze_log on DHC
DL: analyze_log on Refinery

&&rb6 apply_process_model_to_transformation_task
P: a. port a SNAP COBOL program running on a Honeywell to a UNIX box running Micr
b. replace the file operations with an equivalent database language.
UL: simple porting
DL: demonstrate process
DL: demonstrate DHC
DL: demonstrate_ Refinery
DL: demonstrate_Unified Environment

&&W2 Preserve_decision_structure_in AST

P: If refinery is used to transform one source code document into
another, then any decision structure associated with the first
document needs to be transferred to the second.

UL: interface_between_ DHC&Refinery

DL: Precision_of decision_transformation

&&w3 Precision_of_decision_transformation

P: How is the precision of decision structure maintained through the
Refinery transformation. Since the AST is not line oriented, the
decision view don’t map one for one on the AST

UL: Preserve_decision_structure_in AST

DL:

&&w4 new_code_added_by transformation rule

P: How is new code added by transformation rule to be instrumented
for its decision structure? It is possible that this new code solves a
problem of differences between platforms or compilers (an accidental
difference by Fred Brooks classification).

UL: process_model_ implementation



DL:

&&w5 transformation_rule decision_views

P: How to record the decisions involved with defining the
transformation rules themselves.

UL: process_model implementation

DL:

&&w6 manual after_ transformation

P: How to support manually processing that occurs after the
transformation. Also how does the programmer understand what the
transformation system has done?

UL: process_model implementation

DL:

&&r7 tool_for upgrading_ DHC
P: What tool to use for DHC?
UL:upgrade_DHC
DL:

&&r8 robustness_of DHC
P: What criteria should we use for choosing a tool for DHC?
UL:
DL:

§&r% order_ of objects_editing
P: How to edit 2 objects in order: describe problem and agenda object?
UL:
DL:

&&rl0 insert agenda_list
P: Insert a problem into the agenda list.
UL: upgrade_DHC
DL:

&&rll modify-agenda-list
P: modify entries of a problem in the agenda list to reflect the status 'of probler
UL: upgrade_ DHC
DL:

&&rl2 entry definition
P: Entry definition in DHC files.
UL: upgrade_DHC_quit
DL:

&&rl3 field definition
P: Identification of fields in an entry in DHC files.
UL: upgrade_DHC_quit
DL: empty field definition

&&rl4 empty field definition
P: Which is the definition of an empty field?
UL: field definition
DL:

&&15 apply and _improve_ DBSD_methodology
P: apply DBSD methodology to various applications and eventually improve it, as a

&&rl6 long_term goals
P: Reuse prcblem, include some AI techniques, etc.
UL: apply_and_improve DBSD_methodology



DL: reuse_problem,

&&rl7 reuse_problem
P: How to reuse actual solutions from our problem space to solve new problems?

UL: long _term goals

&&rl8 AI applications
P: Apply some AI methods, techniques to DBSD
UL: long_term goals

&&rl9 porting_problem
P: porting applications from one machine to another
UL: reengineering_problem
DL: simple_porting

&&r20 enhancing problem
P: enhancind the features of an application
UL: reengineering problem

&&r2l translate_ problem
P: translate from a language A to another language B, on the same machine

UL: reengineering problem

&&r22 simple_porting
P: support onlu simple porting from one source machine to a target machine
UL: porting problem
DL: market_study
DL: reengineering proces_model
DL: CASE_tool for_reenginerring
DL: apply process_model_to_transformation_task
DL: evaluation_problem

&&r23 complex_porting
P: support both porting and reverse porting
UL: porting problem

&&r24 market_study
P: we need more information from a market study done by the Paramax
personnel to gide our efforts into the direction desired by paramax.
UL: simple porting
DL: reengineering contracts&characteristics
DL: reengineering_solutions&characteristics

&&4r25 reengineering_ contractsé&characteristic

P: how many reengineering contracts exist at Paramax and which are their
characteristics?

UL: market_ study

&&r26 reengineering_solutions&characteristics

P: what other solutions have been used till now for the reengineering
projects and which are their characteristics

UL: market_study

&&4r27 process_model implementation
P: issues in the actual implementation of the process model of Paramax
UL: reengineering process_model
DL: new_code_added by transformation rule
DL:transformation rule decision views
DL: manual_after_fransformation—

&&r28 notations_for_process_model
P: notations to use in a formal specification of the process model
UL: reengineering process_model

&&r29 get_Refinery process model
P: get the process model for Refinery use in this problem



reengineering_process_model

r_Rengineering

get DHC_process_model_fo
adjust the DHC process model to the porting problem
reengineering_process_model
ss_models
plem where we have used

. combine_DHC&Refinery_proce

get the global process mode

the Refinery and DHC
reengineering_proces

ocess_Model
ptain with the logging forms on Process Model

1 for the porting pro

s_model

2 analyze_log_on_?r
analyze the data ©
statistical_analizer

ified_Environment
btain with the logging forms on Unified_Environment

ie

33 analyze_log_on_Un
analyze the data ©
statistical_analizer

L:
34 analyze_log_pn_DHC
analyze the data obtain with the logging forms on DHC
iL: statistical_analizer
on Refinery
the logging forms on Refinery

-35 analyze_log_on_
>. analyze the data obtain with
JL: statistical_analizer

36 demonstrate process
process model of the pHC methodology and the

p: develop & prototype

wwironment
UL: apply_process_model_;o_transformation_task

HC
ype to determine the value of DHC

raded DHC protot
del_to_transformation_task

.r37 demonstrate D
p: develop an upg
UL: apply_process_mo

monstrate_ Refinery

of using Refinery for thi

fficiency
del_to_transformation_;ask

s type of problems

&r38 de
P: demonstrate the e

UL: apply_process_mo

1&r39 demonstrate_Unified_Environment
p: demonstrate the utility of building a unified environment fron the
interaction of Refinery and DHC
UL: apply_process_model_to_transformation_task
&&r40 upgrade_DHC_quit
p: upgrade DHC quit with the updating of the agenda list
UL: upgrade_ DHC
DL: entry_definition
DL: field_definition
&&zl logging—form—representation
p:How toO represent the login forms?
UL:logger
DL:1log-PM, log-UE, log-DHC, log-Refinary
§&z22 log-PM
P:How tO represent login form for the porting process Model?
UL:logging-form-representation
DL:
§&23 log-UE
pP:How toO represent login form for the United Environment?
sentation

UL:logging-form—repre
DL:



&&z4

&&25

§&26

&&z7

&§&z8

&&29

&56210

&&zll

&&z12

&&213

&&zl1l4

&&z15

log-DHC
P:How to represent login form for DHC?
UL:logging-form-representation
DL:

log-Refinary
P:How to represent login form for Refinary?
UL:logging-form-representation
DL:

CASE-tools
P:What kind of CASE tools will be employed to support the porting?
UL:simple-porting
DL:dhc-refinary-integration

dhc-refinary-integration

P: How to integrate DHC and Refinary?
UL:CASE-tools

DL:loosely-coupled

loosely-coupled

P:How do we build a loosely coupled system for the porting?
UL:dhc-refinary-integration

DL:Unified-Environment

Unified-Environment

P:What should we do to build a Unified Environment?
UL:loosely-coupled

DL:upgrade-DHC, understand-Refinary, interface-between-DHC-Refinary

upgrade-DHC

P: How to make DHC more robust and stable enough?

UL:Unified-Environment

DL:decision-views, problem-solving-levels, problem-locating,
conditional-decisions,dhc-evaluation-enhancing,unique-names,

understand-Refinary
P: We should have a good understanding about Refinary before we could
integrate DHC and Refinary.
UL:Unified-Environment
DL:

interface-between-DHC-Refinary
P: How do we build the interface between DHC and Refinary in a
loosely-coupled Unified Environment?
UL:Unified-Environment
DL:

decision-views

P: In porting source-code to another machine (say, A to B), two person
(say the user and the porting engineer) may have different "decision
views". How do we support different decision structures on the same
source code?

UL:upgrade-DHC

UD:view—-filtering

view-filtering
P:It should exist the possibility of filtering the views or part
of a view I'm interested to see. We should support view-filtering
for porting engineer, project manager, and other users.
UL:decision-views
DL:

problem-solving-levels
P:How do we support problem-solving at different levels? We should be
able to identify a problem at one level and solving it at another



&&2z16

&&z17

&&z18

£&z19

&&

level (the system’s or the user’s levels) .
UL:upgrade-DHC
DL:

problem-locating

P: In writing down all Problems in the overall Problem Space: do
we face the problem of knowing whether or not this problem has
already been defined in the Problem Space? 1Is a Problem part of
a larger Problem Structure? Where does it fit into the Problem
Space? It seems that one has to know the entire Problem Space
in order to know where this Problem fits in.

UL:upgrade-DHC

DL:

conditional-decisions
P: Make and keep notes regarding conditional decisions; add to the
DHC code so that we are able to backtrack decisions.
UL: more-dhc-fuctionality
DL:

dhc—evaluation—enhancing
P: How to enhance DHC evaluation methods?
UL:
DL:evaluation-methods

unigque-names
P: How to generate unique identities for problems and decisions.
The current practice in dhe is to use the first character of

login name with a number. This is too weak and should be changed.

UL:upgrade-DHC
DL:



DECIsiON = PACL re. dd

&&rl reengineering problem

Al: Develop a fully automated, non-interactive system for specific cases.
(for example, an Expert System for transforming a COBOL pProgram)

AZ: Develop an eéxpert system using only DHC.

A3: Develop an interactive system using both DHC and Refinery.

A4d: Non-~automated system for a specific case. (like "awk")

D: A3) Develop a Reengineering_process*model, a running, effective
DHC_prototype, make Refinery part of the environment, and link DHC and
Refinery into a Unified environment.

J: Dictated by
a. the availability of DHC and Refinery; it will be a matter of evaluation

b. validation of the above decision
UL: reengineering problem
DL:
C:

&&r?2 reengineering_process_model
Al: Develop separate methodologies for:
a. Porting to different dialects of COBOL (e.qg. Honeywell to Microfocus)
b. Enhancing applications (e.g. using SQL language instead of file operatio)
C¢. Translating into another language (e.g. COBOL to Ada)
A2: Develop a general methodology for everything.

D: Al)
J: The process is too little understood to fully develop a general methodology fo:
UL:reengineering_process_model
C: We assume that the existing application is partially DHC-ed.

&&r3 evaluation problem
Al: Have separate Logger and Statistical_analyzer for reengineering_process_model
A2: Have one for both applications.

D: AZ) Develop one Logger and one Statistical_analyzer and apply them to solving

UL: evaluation_problem

&&rd4 logger
Al: Keep a notebook of activities, tool, feature, time start, end, products (sour:
A2: Collect information by instrumenting DHC,Refinery, project accounts, UNIX.
A3: Combination of 1 and 2.

D: A3)

&&rS5 statistical analizer
Al: List of features (commands) and their use (frequency, duration) .
A2: Size of various parts of documentation (decisions, rules, source code)
A3: Amount of new parts vs. changes in existing ones.

&&r6 apply_process_model_to_transformation_task
A .

D:



re.dd

&&w2 Preserve decision structure in AST
A:
1) Manually reconstruct the decision structure
2) transfer the decision structure into the AST (Abstract
Syntax Tree)
3) semi-automatic match of old and new to transfer
D: A2
J: Al is too labor intensive, AZ should be possible since
information about the line numbers if available during the parse. In
fact they seem to use this information in linking the AST to the
source code. If the line numbers were kept in the AST, then the
decision views would also be known (LINK to decision to have as the
least granularity of a decision the line).
UL:
DL:
C:

&&w3 Precision of decision transformation

A: 1) don’t worry about it, the mapping will be close, use whatever
line numbers is available.

2)

D:

J:

UL:

DL:

C: How mush of a problem is this?
Since no decision was made initially, this should remain on the agenda.

&&wWwd new code added by transformation rule
A: 1) don’t add any decisions
2) don’t add any but notify the user (keep on the agenda)
3) add from the transformation rule if accidently difference
handled by the rule
4) add decision from the union of the AST of the old
5) same as 4 but only if one view
D: A3 maybe - this is a conditional - need further study

&&w5 transformation rule decision views
A 1) don’t need to, there aren’t that many
2) use DBSD as normally
3) Cross link to transformed system

&&wb manual after transformation
A: 1) Use DBSD to record any decisions

&&



&&r5 tool_ for DHC
Al: use Emacs in files .dd, .pd, .al(agenda list)
A2: create a dedicated editor

D: Al)
J: programming ease

&&r6 robustness_of DHC
Al: Programming ease.
A2: Robusteness.

D: Al

JUL: tool for DHC
UL:

DL:

C:

&&r7 order_of_ objects_editing
Al: write our own interpretor
A2: check consistency every time we use a DHC command
A3: check consistency on exit
A4: rely on user to be "nice",

D: A3

J: In dhc_quit we check the .dd and .pd files for consistency of the objects.
Check every field and modify in the Agenda Status.

UL:

DL:

C:

&&r8 insert _agenda list

D: For each problem, put the following entries:
&&<problem-description-name>:
\tDate Entered: <the time when the probelm was entered> ;filled automatically
\tDue Date: <the time when the problem will be solved> ; blank initially
\tResponsible Engineer: <the person responsible for solving this problem> ; in
the person who created the problem
\tPriority: <an integer ranger from 0 to 100, 0 - lowest and 100 - highest>; b.

\tStatus: ; Currently there is only the "Empty Fields" sub-entry
\t\tEmpty Fields: <the blank entries of the problem in DHC.pd and DHC.dd> ; al.
\tComments:

J: provide whatever is needed.
UL: describe-problem

UL: make-decision

DL: terminal

&&r9 modify-agenda-list
Al: modify automatically.
A2: let users do it.
D: A2
J: simple, and some entries such as "Priority" can not be set automatically.
UL: insert-agenda-list
DL: terminal
C:

&4r10 entry_definition
A:



D:

an entry starts with vege"

J: For an easy identification of the entries.

UL:
DL:
C:

rll field_definition

A-

D: An entry field begins with TABQRE.
J: For identification purposes.

UL:
DL:
C:

r12 empty field definition

Al:

Just a CR.

A2: Without any character.
D: Al- need to be validated later.

J:

UL:
DL:

*C:

&zl

&z6

&z

&z13

[N TRv]

logging-form—representation

:1). a form of the process model and checkout the steps

that I am doing.

2). a list of the terminal activities from the process
model. In this case I loose the sequence of activities
and the objects on which I do the activities.

The form we need should state the activities, the time
spent on each of them, the order of activities.

CASE-tools

:1)use DHC alone;

2)use Refinary alone;
3)use both DHC and Refinary;
4)Use other tools.

D:We choose the third alternative.
J:
C .

dhc-refinary-integration

A:

D:
J:
C:

1) make them loosely coupled, seeing each other like a black box
that executes its job sequential in time with respect to the
other tool.

2) make them tightly coupled.

For a tightly coupled version we will need to embed DHC in Refinery,
to consider each of the Refinery functions as black boxes and wrap
them in DHC functions, if they are sufficiently small. Also we would
need that this functions be noninteractive so that we can have the
control of the user actions at the DHC level. For this we would need
a deep understanding of the source of Refinery, to figure out how

to make the link with DHC. We would need from Paramax a detailed
list of capabilities and functions of Refinery.

decision-views

We do not wish to have several operations active at the same time;
i.e., only when the code is completely ported to the target machine
then is it turn over to the user (from porter’s view to the user’s
view) .



&é&

UL:
UD:



Preliminary Draft: 11/18/92

ATTACHMENT #6

Process model for traditional life cycle of

software notations specific to DHC



Notations

--> - is dcfincd as

Capital - a label for a subspace of the process model space - an inwcrmediale symbol
- a set of activitics donc oftcn cnough to merit its own name.

lower - name of an object cither needed for an activity or produced by an aclivil’y&
> - indicatcs data (object) flow (input or output)

Capital ,, - subs is the person normally engaged in this activity
boldlower - functionality availablc in DHC or process modcl

[] -repeat O or 1 time

{} - repecat O or more times

|- altcmate paths in subspacc

activity  Nactivity, - activitics which can be donc in parallel
_acu’viryl "blank" activity, - aclivitics which arc donc in scquence

() - uscd for grouping, but docs not assign an intcrmediatc name 10 it.
/*comment*/ - can be uscd anywherc in process model to help explain
namec:objcct - namcs an instant of an object in the process model

V{objects) > Activity - perform activity for all objccts in sct in random order



Process Model Objects

Software = (lines of source code)

Documentation = (problem_space, decision_sct, documents, justification_rclation, dependency_relation,
decision_rclation, altcrnate_rclation, task_rclation, description_relation, view_rclation)

Documents = (rcquircments, specification, design, source)
Alternate_relation = (problem x problem)
Justification_relation = (problem x problcm)
View_rclation = (problem x document)
Dcpendency_relation = (problem x problem)
Deccision_rclation = (problem x decision)

Task_relation = (problem x task_problem)
Description_relation = (problem x problem_description)
Works_with_rclation = ((manager,task), (softwarc_cngincer, problem))
Problem_space = (problem)

Decision_set = {decision)

System = (software, documentation)

Environment = {DHC}

Schedule = ((task, problem, person, status, priority)}
Agenda = {(problem, progress information))

Session = documentation usy, times—d0CUMENIALION gy rimen

Problem_description = ((description, altcrnates, decision, justification), attributcs: (abstraction_lcvcl,
generic, user_filter, size, reuse_list)),

/* generic: a node in generic if it is contained in all altcmmatives of its father*/
/* user_filter: uscd to create user defined filter*/
/* notes: arc created during the understanding and assessment phasc*/

Size = (# problem, # LOC, # documecntation, # filter (documentation))



-7
Task_problem = (problem, (reusc_list, generic_list, out_list, modify_list, ncw_list)
risk, effort, lower bound: sizc, upper bound: sizc))

/* task is a request from cither the customer or the manager 10 change some aspect of the cxternally obscrvable
behavior of the system, Adaptive task = changs n roquiromant; perfectva sk - change decision In a problam;
corrective task - change softwarc and/or documcntation of a problem nodc whosc solution is incorrect. It is
represenicd by a problem_description®/

Persons = (MAnager, SOftware_engincer, CUstomer)

Report = {lines of text)

Mceting_notes = (lincs of text)



Process Model for Traditional Life Cycle

Detailed Description

External_customer_requiremeni_resolutioncy --> taskcy > (Softwarc_development
I Customer_feedback) > system

Internal_perfection_and_correctioncyya —> taskcyma > Softwarc_dcvelopment >
system ‘

Software_development --> task > (Understandingya
Understandingsg) >*requircments_dcfinition*/ task_root: task_problcm
*list_of_rcusablcs candidates*/ {problem IR
Task_problem_solving > *first_level_dccomposition®/ {task _problem]},
{Assessmeniya s > (task_root, cffort, task_root.size, task_rootrisk) Change_task_decision > task_root}
Assign_resources > schedule
Transfer_task_to_problem_spacc > agenda
{agenda; schedule > Solve_problemsg > agenda
Revicw_meccting > mecling_notes
Implement_meeting_dccision > schedule, agenda)
Understandingys sg --> Exploring |l add_to_reporty, sg > report

Exploring --> Requirements_definition [l Reusability_scarch

Requircments.definition --> (keywords > locate_problem > relevant_nodes: (problcm},
make_new_requirement) > lask_root_problcm

V relevant_nodcs > Understand_problem
Understand_problem --> problem >{(Visit_nodc dependency_up > problcm)
| terminate_at_node_closure_relevant_nodes
| back)
f*cxploration*/ (justification_from > problem

| justification_to > problem
| dependency_up > problcm
I dependency_down > problem)

Visit_node --> problem > read. description document_view Read_document Read_justification

Rcad_document --> {(switch_view /* special view: filc view */|problem | decision |
back | scroll_view | emacs_commands)}

Rcad_justification --> V (justification_to & justification_from) (read_description | Visit_nodc)



Task_problem_solving --> task_root > (V node € rclevant_nodcs) (Modify_cxisting_node > (task_problem])
(task_root > Create_additional_ncw_task > task_problem})

Modify_existing_node --> node > create_task_problem > task_problem, task_rclation
tag_subproblems Modlfy _problem_node

Modify_problem_node --> node, task_problem > {Add_ncw_fcature | Delete_old_feature

lChangc old _fcaturce | Copy_generic
! Add_rcusc /* for all nodes on reusc list)

Add_new_feature --> node, task_problem > change-description add_justification
create_new_task problem
add_to_new_list
Dclete_old_feature --> add_to_out_list
Changc_old_fcature --> node, task_problem > change_description adjust_justification
create_new_task_problem > modify_node, modify_task_problcm >
Modify_problem_node
/* stop decomposition of modification at point where it is possible 1o estimate size */
add_to_modify_list
Copy_generic --> change_description adjust_justifications copy_new_generic_task_problem add_to_generic_list

Add_reusc --> change_description adjust_justification adjust_reuse_task_problem add_to_reuse_list

Crcale_additional_new_tasks --> create_new_task_problem
First_level_decomposition > task_problem

First_lcvel_decomposition --> task_problem > {create_new-task_problem add_to_new_list]
/* creatc decomposition problem nodes for cach task problem node and tag (create a list of) them as generic: o0 be

uscd in all altcrnative solutions, out: not to be uscd in the new Lask, reuse: o be used with minor modification, new:
a new fcature is to be added to the original solution, modify: one or more subproblems have to be added, deleted, or

changed */
Asscssment --> Calculate_Dircct_Effect Caiculate_Indircct_Cost Review_Datay,

Calculate_Dircct_Effect --> (V task € {task_problem])(V task_nodc € task.generic N task.out M task.rcuse)
calculate_node_size calculate_risk_efTort > {task_nodc])

(V task_node € ncw) efforisg, riskse > get_effort_risk_size_estimates > {task_nodc)
(V wask_node € modify) Assessment > (task_node])

{task_nodc} > calculate_task_problem_size > task
/* for cach category add the number in the subproblem nodes o obtain the rclevant figures in the task problem node*/

(task_node] > calculate_task _problem_effort > task
/* this is the sum of the efforts in the subproblem list */

(task_nodc) > calculate_task_problem_risk > task
/* the sum of the risks in the subproblcm nodes */



- 10 -

(task) > add_up_direct_costs > task_root
Caiculate_Indircct_Cost --> relevant_node > get_closure_list_justification_to_from > ripple_list: {problem]
(/* get the worst possible impact by calculating the transitive impact closure for the justification limits */
V (nodc € ripple_list) calculate_total_node_size > {task_problcm.upper_bound}
/* add up all the mctrics, # problems, #LOCS, ctc, for all the nodcs in the closure */
/* allow for interactive cstimates */
[ (V node e ripplc_list) (read_description (calculate_total_node.size | skip)) > {task_problem_lower_bound)
/* add only sclected nodes to the calculation */
(task_problem} > add_up_indirect_cost > task_root
Revicw_Data --> (({rclevant_nodc), {task_probicm], task_root, ripple_list) > Pick_node read_description)
Pick_nodc --> dependency_up | dependency_down | justification_to | justification_from | task
Reusability_scarch --> add_reusable_node > task_problem.rcusc_list

/* during exploration when finding candidate for rcusc, add to rcuse list of relevant node
which is first in up chain of nodc in questions */

Change _task_decision --> (task_problem > delete_task_problem > node
(node > Modify_existing_node | task_probicm > Crcatc_additional_ncw_task) > task_problem}

/* deletc a task problem and all its descendants and replace it with an altemnate solution
to the relevant node in the problem space or with an altogether new task node*/

Create_additional_ncw_task --> task_root > Make_node > task_probicm
Make_node --> node > create_new_problem_node > new_nodc > Add_info_to_nodec > new_node
Add_info_to_node --> (fill_in_description |link_justification | make_decision | write_and_link_documentation)
Assign_rcsources --> produce_;chedule Ma > schedule

/* it is lcft to the managing systcm uscd to derive schedule from assessment data*/

Transfcr_task_problem_spacc_to_task_root --> task_root > transfer_tentative_to_problem_space > task:problem, agenda,
visiblc_altcrmative

/* transfer all task problems and their sub problcms to the problem spacce, removing cxisting problems, documenta-
tion, source code which are to be modificd but saving them on an alternative list for possible reuse. All new prob-
lems are added to the problem space. All incomplete problem nodes are added to the agenda. */

Solve_problem --> agenda > take_agenda_probiem > node:problem
Add_info_to_node
{Make_node > new_node Solve_problem)
Adjust_agenda > agenda, report



<11 -

/* any incomplete node has to be added to agenda and those compicted can be taken off (to be saved in report) */

|ladd_to_report sg s > rcport ,
/* notes on activitics arc added 1o a rcport */
Iresearch_problems sg y4 > report

/* rescarch needed 1o solve probiems or prepare for the revicw mecting arc done according to whatever system is
prescribed and results in knowicdge how to proceed with the Solve_probiem activities or in a report for a meeting.
This includcs preparing a print-out of differcnces in decision graph, source and documentation. */

Review_meeting --> (Review_reports {(Generate_problems | Make_decision)} Review_progress)
[ladd_to_notes sz y4 > mccling_nolcs

Revicw_reports --> (review_report , s¢ | review_agenday,a se | review_schedule yu sz)
Generatc_problems --> {describe_problems g | describe_alternatives g | give_justifications sz )
Make_dccisions --> {unconditional_decisions ¢y, | conditional_decisions gg y4 )

Implement_mecting_dccisions --> {(Change_dccision | Add_unconditional_decision | Add_conditional_decision |
Add_problem}

Change_dccision --> locate_decision delete_problem > node
/*node is the parent of the problem deleted */
Make_node > new_node
Add_info_to_node > ncw_node
Adjust_agenda > agenda

Add_unconditional-decision --> locate_decision Adjust_agenda > agenda Add_info_to_node

Add_conditional _dccision --> locate_decision Add_info_to_nodc get_parent_node > node
Make_nodc > new_node
/* create problem node for instrumentation problcm */
Add _info_to_node
Adjust_agenda > agenda

Add_problem --> locate_parent > nodc
/* find the place in the problem space where this problem should go */
Make_node > new_node
Add_info_to_nodc
Adjust_agenda > agenda

Adjust_agenda --> add_agenda_problem ldelete_agenda_problem I modify_agenda_problem



Preliminary Draft: 11/18/92

ATTACHMENT #7

Logging form



Tool Used Activity Performed | Features Used [Start Time |End Time |Product




